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Abstract—The degrees of freedom (DoF) of the 3-user
multiple-input multiple-output (MIMO) interference chan-
nel (IC) with full channel state information and constant
channel coefficients are investigated when (p, p + 1) an-
tennas are deployed at the transmitters and receivers,
respectively. The point of departure of this paper is the
work of Wang et al. , which conjectured but not proved the
DoF for the antenna settings with p > 1. Here the achiev-
ability of the DoF outer bound is formally proved using
linear methods, thereby avoiding the use of the rational
dimensions framework. The proposed transmission scheme
exploits asymmetric complex signaling together with sym-
bol extensions in time and space interference alignment
concepts. While the paper deals with the p = 2, 3, . . . , 6
cases, providing the specific transmit and receive filters,
there are also provided the tools needed for proving the
achievability of the optimal DoF for p > 6, whose DoF
characterization is conjectured.

Index Terms—interference channels, MIMO, interfer-
ence alignment, degrees of freedom

I. INTRODUCTION

In recent years, the degrees of freedom (DoF)
have emerged as one of the most important metrics
for characterizing interference networks. The DoF
describe how the system sum rate scales with the
logarithm of the signal-to-noise ratio (SNR) at the
high SNR regime. Therefore, the study of the DoF
reveals how deploying additional antennas at the
nodes (and/or considering multiple time/frequency
transmissions) provides additional signal dimen-
sions that can be exploited for data-rate gains. The
interference alignment (IA) concept has been one
of the fundamental tools to elucidate the optimal
DoF for certain configurations of interference net-
works. The main purpose of IA is to design the
transmit filters in such a way that each receiver
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observes all the interference signals overlapped in
a common subspace. The concept was originally
proposed in the context of index coding in [1],
while it crystallized later on for the 2-user multiple-
input multiple-output (MIMO) X-channel in [2] and
for the K-user single-input single-output (SISO)
interference channel (IC) with K > 2 in [3]. Sur-
prisingly, Cadambe and Jafar [3] proposed a linear
precoding/decoding scheme that provides each user
half the cake, and therefore a total of K/2 DoF over
the network. Additionally, the authors showed that
this result generalizes to the MIMO case, obtain-
ing KM/2 total DoF when all nodes are equipped
with M antennas. For both cases, the achievability
of fractional DoF relies on transmitting along an
arbitrarily large number of channel uses on a time-
varying or frequency-selective channel. However, it
fails when considering a constant SISO channel.
This is because the equivalent channel matrices
result on scaled identity matrices with not enough
diversity as compared to the case where channel
variations or multiple antennas can be exploited.
This limitation revealed that when the channel coef-
ficients are constant the signal dimensions provided
by deploying additional antennas (referred in [4] as
space extensions) provide more diversity than the
signal dimensions exploited through time/frequency
extensions.

There is a large number of works in the literature
that have employed the IA concept for analyzing
the MIMO IC in terms of DoF, see for example
[4], [5], [6], [7], [8], [9], [10], [11]. Especially
interesting is the work in [9], where the authors
showed the DoF reciprocity concept in wireless
networks. This property states that given a network
with one particular antenna setting, its reciprocal
setting, i.e. a network where the number of anten-
nas at the transmitters and receivers (or the roles
of transmitters and receivers) are exchanged, has
exactly the same DoF. This important result alleviate
the challenge of characterizing the channel DoF,
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because only half of the number of antenna settings
have to be considered.

After the disrupting idea of IA, different types of
IA have been proposed. In the literature, there are
two different frameworks for developing IA-based
transmit precoders: lattice level IA [12] (lattice
alignment), and space level IA [2], (space align-
ment). These two techniques arise from the choice
between structured or random codes, respectively.
Lattice alignment-based techniques use structured
coding, e.g. lattice codes, to align the interference
on the signal scale level. This idea was exploited
in the context of the rational dimensions framework
by Motahari et al. in [13]. Following this line of
research, Ghasemi et al. [14] showed that the DoF
outer bound may be attained for almost any user and
antenna settings. Nevertheless, its rate performance
is extremely degraded at medium SNR values [15].
In contrast, space alignment techniques provide a
better rate performance at moderate SNR regimes,
but they only attain optimality for certain antenna
configurations when the channel coefficients are
constant.

This paper considers the conventional IA ap-
proach, denoted as linear IA, under the space align-
ment framework, to investigate the linear DoF,
i.e. the DoF that can be achieved using linear
encoding strategies, of the 3-user MIMO IC with
constant channel coefficients. Two other types of
IA have been proposed in the literature under the
space alignment framework: ergodic IA (EIA) [16]
and opportunistic IA (OIA) [17], [18]. These two
approaches do not apply to the scenario considered
in this work, as we discuss next. First, EIA relies on
repeating the same transmission along two time slots
with complementary channel states, i.e. two channel
realizations such that the interference is canceled
by simply summing up the signals received from
both time slots. The surprising result in [16] was
that the optimal K

2
DoF value can be attained in

a K-user SISO IC. However, time-varying channels
is a fundamental feature for applying EIA, which
differs from the constant channel condition assumed
here. Second, OIA exploits the user dimension
through scheduling. The idea is to combine the ben-
efits of opportunistic beamforming and IA, which
allows a significant reduction of the control plane
information sharing. This work assumes a more
generic case where users cannot be selected and its
channels are given, thus OIA will not be considered.

The most relevant current results in terms of
DoF for the 3-user MIMO IC under the linear
IA approach are reviewed in the sequel. First, for
the SISO case, the best known inner bound was
proposed by Cadambe et al. in [10]. The authors
proposed a linear scheme able to achieve 1.2 DoF,
thanks to the asymmetric complex signaling concept.
This approach, together with symbol extensions in
time, is able to independently deal with the real and
imaginary components of the channel. As a result,
the equivalent channel matrices are no longer scaled
identity matrices but present a more sophisticated
structure that can be exploited by the IA scheme.
This tool has recently been shown to be useful also
for the 4-user SISO IC in [19].

For the MIMO case, Wang et al. characterized
the 3-user MIMO IC [4] in terms of DoF. On the
one hand, the DoF outer bound was derived by
introducing the change of basis operation, which
allows to write the equivalent channels in such a
way that the appropriate genie signals to be provided
to each receiver can be more easily identified1. On
the other hand, the proposed DoF inner bound flows
from the subspace alignment chains concept. This
approach proposes a linear transmitter design inter-
twined among users through the alignment, being
optimal in terms of DoF for almost all antenna set-
tings. Nevertheless, it is not known if the DoF outer
bound for the SISO and all (p+ 1, p) and (p, p+ 1)
MIMO settings with p > 12 can be attained using
linear schemes when the channel coefficients are
constant, and no spatial extensions are allowed, see
Section VIII.C in [4]. It is worth pointing out that
the optimality of the case (p, p+1) has been claimed
in [21] by means of asymmetric complex signaling
and subspace alignment chain concepts, but the
result is just sustained on numerical experiments.
Therefore, to the best of the authors’ knowledge,
there is not a formal proof in the literature. Finally,
we remark that the information theoretical DoF
outer bound, which is independent of the encod-
ing/decoding strategy, has been attained using lattice
alignment under the rational dimensions framework.

1Interestingly, the change of basis operation has been found to be
useful for other settings, e.g. the MIMO rank-deficient IC [20].

2The case p = 1 was previously addressed in [7].
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Fig. 1. The 3-user (2, 3) MIMO IC. Solid lines define the intended
signals, while dotted lines denote the interference signals.

A. Contributions

The goal of this work is to formally prove that
the DoF that can be achieved using linear transmit-
receive filters, hereafter denoted as linear DoF,
coincide with the DoF outer bound for the 3-user
(p, p+ 1) MIMO IC even assuming constant chan-
nel coefficients. As an example of such scenario,
Fig.1 shows the 3-user (2, 3) MIMO IC. The pro-
posed scheme is based on interference alignment,
symbol extensions in time and asymmetric complex
signaling. Three contributions summarize this work:

• We prove that the 3-user MIMO IC with con-
stant channel coefficients has exactly p(p+1)

2p+1
linear DoF per user for p = 2, 3...6, see
Theorem 1 and Theorem 2 in Sections V and
VI, respectively.

• The proposed transmit precoding matrices
present a specific structure that can be gen-
eralized for any value of p. This structure is
characterized by two properties: i) there are
some elements equal to zero, and ii) all transmit
precoders are defined as a function of 3 matri-
ces, denoted as the support precoding blocks.
An iterative algorithm is proposed, able to find
the structure of each precoding matrix for any
value of p.

• The proof methodology is also generalized.
Based on this, we conjecture that the value
p(p+1)
2p+1

corresponds also to the linear DoF for
any p ≥ 7.

B. Organization

The paper is organized as follows. Section II
introduces the system model considered. Next, Sec-
tion III reviews the DoF for our specific scenario, as
well as DoF achievability conditions when using IA.
The structure of our precoding scheme is defined in
Section IV, as well as how this structure is related
to the alignment chains. Section V is devoted to
the p = 2 case, while Section VI addresses the
p = 3 case, which differs from the previous case
in notation, and allows the generalization of the
precoding scheme for p > 3. This is achieved
by means of the zero propagation algorithm, pre-
sented in Section VI. These cases p = 2, 3 allow
understanding the achievability proof for the general
case. Moreover, simulation results are provided in
Section VII, where the the sum-rate is depicted as
a function of the SNR for different values of p, and
DoF achievability is shown. Finally, conclusions are
drawn in Section VIII.

C. Notation

We write vectors in boldface lowercase types (x),
and matrices in boldface uppercase types (X). We
define R,C as the real and complex sets of numbers,
respectively, while (·)T , (·)H , and ⊗ stand for the
transpose, transpose and conjugate, and Kronecker
product operators, respectively. Also, we define

stack
(
A,B

)
=
[
AT BT

]T
. (1)

Furthermore, for any given N -column vector
x = [x(1), x(2), . . . , x(N)]T and M -column matrix
Y = [y1,y2, . . . ,yM ], we define

x(a : b) = [x(a), x(a+ 1), . . . , x(b)]T ,

Ya:b = [ya,ya+1, . . . ,yb] .

Additionally, d.e, b.c, and 〈.〉 stand for the ceiling,
floor, and modulo-3 operators, respectively. We re-
mark that all indices in this work are assumed to be
in the set {1, 2, 3}, applying the modulo-3 operation
only if necessary. Finally, span

(
A
)

defines the sub-
space generated by all linear combinations of the
columns of A, and rank (A) denotes its dimension.

II. SYSTEM MODEL

The 3-user (p, p+ 1) MIMO IC is consid-
ered, where each transmitter and each receiver is
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equipped with p and p + 1 antennas, respectively.
Each transmitter aims to deliver a message to one
unique receiver, labeled with the same index. Per-
fect and instantaneous channel state information is
assumed and exploited at both sides. Channel coef-
ficients are randomly drawn from some continuous
complex probability density function, and assumed
to be constant along the whole transmission time.
The transmission is carried out over 2T equivalent
channel uses thanks to the T symbol extensions in
time and asymmetric complex signaling [10]. The
received and processed signals may be written as
follows

yj = Hj,jVjxj +
3∑

i=1,i 6=j

Hj,iVixi + nj, (2)

zj = Wjyj, (3)

where yj ∈R2T (p+1)×1 is the received signal vector
at the jth receiver, zj ∈ Rd̂j×1 is the processed
signal, xj ∈ Rd̂j×1 is the vector composed of d̂j
real-valued uncorrelated data symbols defining the
message intended to the jth receiver, Vj ∈R2Tp×d̂j

is the precoding matrix of the jth transmitter,
Wj∈Rd̂j×2T (p+1) is the jth linear receiving filter,
and nj ∈R2T (p+1)×1 denotes the noise vector at the
jth receiver, whose components are i.i.d. as N(0, 1).
Furthermore, Hj,i ∈ R2T (p+1)×2Tp stands for the
equivalent channel matrix from the ith transmitter to
the jth receiver after considering symbol extensions
in time and asymmetric complex signaling concepts,
and applying a change of basis operation, as detailed
next.

Let H̄j,i∈ C(p+1)×p be the original spatial channel
matrix from the ith transmitter to the jth receiver,
and assume a transmission over T channel uses. In
such a case, one could stack all the received signals,
and write a compact system model. The equivalent
channel matrix could be written as follows:

T
(
H̄j,i

)
= IT ⊗ H̄j,i, (4)

where IT ∈RT×T is the identity matrix.

Real and imaginary parts of the received sig-
nals could be considered separately, as done in
[10], and applied to each whole channel matrix.
In contrast, here we use the asymmetric complex
signaling (ACS) concept for each particular channel
coefficient. The extended form for each channel

element is therefore written as:

ACS
(
h̄q,rj,i
)

=
∣∣h̄q,rj,i ∣∣ Ū (φ̄q,rj,i )∈R2×2, (5)

where h̄q,rj,i is the complex channel gain between the
rth antenna of transmitter i and the qth antenna of
receiver j, φ̄q,rj,i is the phase of the complex number
h̄q,rj,i , and Ū

(
φ̄q,rj,i
)
∈R2×2 is an unitary matrix given

by:

Ū
(
φ̄q,rj,i
)

=

[
cos
(
φ̄q,rj,i
)
− sin

(
φ̄q,rj,i
)

sin
(
φ̄q,rj,i
)

cos
(
φ̄q,rj,i
) ] , (6)

with some interesting properties, for example:

Ū (a) Ū (b) = Ū (a+ b) , Ū(a)−1 = Ū (−a) , (7)

for any arbitrary phases a, b ∈ [ 0, 2π ].

For the sake of clarity, let us write the equivalent
channel channel matrix Ĥj,i∈R2T (p+1)×2Tp when
the two previous concepts are together applied,
given by

Ĥj,i =

 C
(
h̄1,1j,i
)

. . . C
(
h̄1,pj,i
)

... . . . ...
C
(
h̄p+1,1
j,i

)
. . . C

(
h̄p+1,p
j,i

)
 , (8)

with C
(
h̄q,rj,i
)

=
∣∣h̄q,rj,i ∣∣ IT ⊗ Ū

(
φ̄q,rj,i
)
. Now the last

step to obtain the system model in (2) consists on
applying a change of basis (CoB) operation [4]:

Hj,i = CoB
(
Ĥj,i

)
= RjĤj,iTi, (9)

where Rj ∈ R2T (p+1)×2T (p+1) and Tj ∈ R2Tp×2Tp

are invertible linear transformations applied at the
transmitters and the receivers. This way the resulting
equivalent channel becomes a rotation of Ĥj,i that
contains zeros at some specific antenna elements,
see [4] for details.

In this work, the same CoB as in [4] is applied at
the transmit side, whereas on the receiver side some
additional operations described in Appendix A are
applied. This way we obtain a simplified structure
for the channel matrices, which helps in the precod-
ing design based on interference alignment, as well
as the achievability proof.
Remark: Notice that matrices Rj and Tj are ap-
plied at the transmitter and the receiver, respec-
tively. Therefore, the final precoding matrices at
each transmitter and receiver are WjRj and Tj Vj ,
respectively.
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III. DEGREES OF FREEDOM

The DoF per user dj of the 3-user (p, p+ 1)
MIMO IC are upper bounded [4] by

dj ≤
p (p+ 1)

2p+ 1
. (10)

This value was attained using lattice alignment
based schemes [14], but it is not known if it co-
incides with the linear DoF. On the other hand, the
DoF achieved by the jth user assuming the channel
model described in Section II are given by

1

2T
rank (Wj Hj,j Vj)

(a)

≤ d̂j
2T
≤dj (11)

in case all the received interference is completely
removed, i.e.

WjHj,iVi = 0, ∀i 6= j. (12)

The previous condition forces Wj to be an or-
thogonal projection onto the interference space.
Consequently, inequality a in (11) will be satisfied
with equality only in case the desired and inter-
ference signals are linearly independent. Let define
the signal space matrix (SSM) as the matrix whose
columns generate the sum space of desired and
interference subspaces at each receiver,

Gj =
[
Gdes

j Gint
j

]
,

span
(
Gdes

j

)
= span

(
Hj,jVj

)
,

span
(
Gint

j

)
= span

( [
Hj,j−1Vj−1 Hj,j+1Vj+1

] )
,

(13)

where Gdes
j and Gint

j are some full-rank matrices
whose columns form a basis for the desired and
interference subspaces, respectively. Given this for-
mulation, proving the DoF achievability reduces to
prove that the SSM is full-rank, since in such a case
desired and interference signals are linearly inde-
pendent. Therefore, there exists a set of transmitting
and receiving filters simultaneously satisfying in-
equality a in (11) with equality and (12), i.e. all the
desired symbols can be interference-free decoded.

This work proposes a linear precoding/decoding
scheme delivering d̂j = 2p (p+ 1) data symbols to
each user, employing ACS and T = 2p+ 1 symbol
extensions in time. Then, it is formally proved that
the achieved DoF coincide with the DoF outer
bound in (10), thus the linear DoF of the channel
are characterized.

( )1
k
kV

( )1 1
k
k−V

( )1 1
k
k+V

kRx

1kRx −

1kRx +

kTx

1kTx −

1kTx +

Fig. 2. Occupation of receivers for the signals designed using
alignment chain k (p = 3 case). Ovals represent different subspaces
at transmitters and receivers. Colors/Line patterns identify users.

IV. PRECODING MATRIX STRUCTURE

The subspace alignment chains concept [4]
describes a linear precoding/decoding strategy
whereby the transmit precoders of the different users
are connected with the purpose of aligning the
interference signals at each receiver. To this end,
the precoding matrix of each user is divided in p
sub-block matrices, grouped in three main matrix
blocks,

Vi=
[
V1
i,(1) . . . V1

i,(S1
i )

V2
i,(1) . . . . . . V3

i,(S3
i )

]
Pi,

(14)

where Pi ∈ Rd̂j×d̂j is a permutation matrix intro-
duced with the purpose of simplifying the descrip-
tion, as detailed in the next sections, and Vk

i,(s) ∈
R2Tp×2(p+1) denotes the sth sub-block of the ith user
designed by means of the kth alignment chain, as
explained later.

For any p, three alignment chains are built, de-
scribing the constraints to be satisfied by each sub-
block, see (16)-(19), where k = 1, 2, 3 identifies
each chain, ηk = k−p is the kth chain last receiver,
and the value Ski denotes the number of sub-blocks
corresponding to the ith user designed according to
the kth alignment chain. Since there are 3 users and
3p sub-blocks, it may be expressed in closed form
as

Ski =

⌈
p− 〈k − i〉

3

⌉
. (15)
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span
(
Hk+1,k Vk

k,(1)

)
= span

(
Hk+1,k−1 Vk

k−1,(1)
)

(16)

span
(
Hk,k−1 Vk

k−1,(1)
)

= span
(
Hk,k+1 Vk

k+1,(1)

)
(17)

span
(
Hk−1,k+1 Vk

k+1,(1)

)
= span

(
Hk−1,k Vk

k,(2)

)
(18)

...
span

(
Hηk,ηk−1 Vk

ηk−1,
(
Skηk−1

) ) = span
(
Hηk,ηk+1 Vk

ηk+1,
(
Skηk+1

) ) (19)


Hk+1,k −Hk+1,k−1 0 . . . 0

0 Hk,k−1 −Hk,k−2
...

... . . . . . . . . . 0
0 . . . 0 Hηk,ηk−1 −Hηk,ηk+1





Vk
k,(1)

Vk
k−1,(1)

Vk
k−2,(1)

Vk
k,(2)
...

Vk
ηk+1,(Skηk+1)


= 0 (20)

The meaning of (16)-(19) is reviewed in the
sequel, and depicted for p = 3 in Fig. 2, where ovals
represent the subspaces for the kth alignment chain
at each transmitter/receiver, and each color/line pat-
tern identifies each user’s signals. First, (16) states
that the subspace occupied by the sub-block Vk

k,(1)

should be the same as that for the sub-block Vk
k−1,(1)

at the (k+1)th receiver, see Fig. 2. In the literature,
this is usually expressed as the alignment between
sub-block Vk

k,(1) and sub-block Vk
k−1,(1) at receiver

(k+ 1). Next, (17) ensures that this latter sub-block
is, at the same time, aligned with Vk

k+1,(1) at the kth
receiver. This process continues as long as there
exists a subspace at each receiver where signals
can be aligned. The existence of such subspace
can be guaranteed by means of basic linear algebra
properties (see [4] for details), and defines the length
of the alignment chain, corresponding to the number
of sub-blocks designed according to such chain.
Notice that the first and last sub-blocks in each
alignment chain participate only in the first and the
last conditions, respectively. Consequently, they are
only aligned with other undesired signals at one of
the non-intended receivers. This can be observed in
Fig. 2 at receiver k − 1.

Equations (16)-(19) are usually tackled by drop-
ping the span

(
·
)

operators, as in (20). Hence, the
precoding matrices are obtained as the right null
space of some matrix3. Notice that (20) represents a

3For p = 2 the notation has to be minorly changed. This case will
be addressed in Section V.

sufficient but not necessary condition for (16)-(19).
In other words, (20) is more restrictive than (16)-
(19), but it is sufficient for our purpose. Finally,
for convenience in the analysis each Vk

i,(s) is sub-
sequently divided in p blocks by rows, as follows:

Vk
i,(s) =stack

(
Vk,1
i,(s),V

k,2
i,(s),. . . , Vk,p

i,(s)

)
, (21)

where each Vk,r
i,(s) ∈R2T×2(p+1) corresponds to one

of the r = 1 . . . p transmit antennas.

V. THE (2, 3) CASE

This section characterizes the linear DoF of the
(2, 3) constant MIMO IC. The proposed precoding
scheme allows each transmitter to deliver d̂j = 12
real-valued symbols to its intended receiver along
2T = 10 channel extensions, thus attaining the
DoF outer bound of 6/5 in (10). First, the precoding
matrices are obtained for this antenna deployment
in Section V-A, designed according to minorly
modified conditions from the ones shown in (20).
Next, Section V-B derives the SSM Gj introduced
in (13) and provides the achievability proof for the
proposed precoding scheme.

A. Precoding matrix design
According to definitions (14) and (21), each pre-

coding matrix can be written as

Vi =
[
V1
i V2

i

]
, Vk

i =

[
Vk,1
i

Vk,2
i

]
, (22)
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with Vi∈R20×12, Vk
i ∈R20×6 and Vk,q

i ∈R10×6. No-
tice that for ease of notation the second subindex (s)
appearing in (14) has been dropped.

From (20), the three alignment chains follow. Let
us focus on the first alignment chain, given by

[
H2,1,−H2,3

][V1
1

V1
3

]
= 0 .

By plugging the particular structure of equivalent
channels (see Appendix A), it reduces to

C
(
h1,12,1

)
0 0 0

0 C
(
h2,22,1

)
C
(
h2,12,3

)
0

0 0 0 C
(
h3,22,3

)



V1,1
1

V1,2
1

V1,1
3

V1,2
3

 = 0 .

Using properties in (7) and taking into account
that non-zero blocks are full-rank with probability
one, since channels are drawn from a continuous
distribution, one obtains

V1,1
1 = 0, V1,1

3 = C

(
h2,22,1

h2,12,3

)
V1,2

1 , V1,2
3 = 0.

The other alignment chains are similarly solved,
thus at the end we have

V1 =

 0 C

(
h2,23,2

h2,13,1

)
V1,2

2

V1,2
1 0

P1,

V2 =

 0 C

(
h2,21,3

h2,112

)
V2,2

3

V1,2
2 0

P2,

V3 =

C

(
h2,22,1

h2,12,3

)
V1,2

1 0

0 V2,2
3

P3.

Now we will make use of the permutation ma-
trices Pi in order to obtain the same structure
for all precoding matrices. Notice that reordering
the columns of the precoders does not affect to
the interference alignment. Furthermore, notice that
there are only three non-zero precoding sub-blocks.
Hereafter, they will be referred to as the support
precoding blocks (SPBs) and denoted as A1,A2

and A3. Therefore, the jth precoding matrix for

j = 1, 2, 3 is generally written as follows:

Vj =

C

(
h2,2j−1,j+1

h2,1j−1,j

)
Aj+1 0

0 Aj

 . (23)

B. Achievability proof

This section derives the SSM Gj as a function
of the SPBs. Then, a design for those matrices is
proposed easing the achievability proof, formalized
in Lemma 1.

For the proper computation of the SSM, let write

Hj,j+1Vj+1 =


0 0

C
(
h2,2j,j−1

)
Aj−1 0

0 C
(
h3,2j,j+1

)
Aj+1


(24)

Hj,j−1 Vj−1 =


C

(
h1,1j,j−1h

2,2
j+1,j

h2,1j+1,j−1

)
Aj 0

0 C
(
h2,2j,j−1

)
Aj−1

0 0

 ,
(25)

defining the subspaces of received interference at
the jth receiver, see (13). Notice that the first
block column of (24) is aligned with the last block
column of (25), which is actually forced by the
alignment chain j + 1. As a result, the basis for
the interference space Gint

j is defined by the three
linearly independent block columns of (24)-(25),
and the SSM Gj is given by (27).

The SSM obtained in (27) is similar to the equiv-
alent magnitude obtained in equation (16) of [21].
Even though in this case the full-rank condition for
the SSM can be ensured by picking entries of the
SPBs randomly (as pointed out by [21]), we present
a formal proof that is also useful for the p > 2 case.

Let define λji ∈ R6×1, i = 1 . . . 5, j = 1, 2, 3 as
the rank descriptors. Then, one may ensure that the
SSM is full-rank iff the only solution for

Gj

[ (
λj1
)T

. . .
(
λj5
)T ]T

= 0 (26)

is to set all rank descriptors to zero. To this
end, let also define an arbitrary orthonormal basis
B =

[
b1 b2 . . . b10

]
∈R10×10. We propose the fol-
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Gj =


C
(
h1,1j,j
)
Aj+1 C

(
h1,2j,j
)
Aj C

(
h1,1j,j−1h

2,2
j+1,j

h2,1j+1,j−1

)
Aj 0 0

C
(
h2,1j,j
)
Aj+1 C

(
h2,2j,j
)
Aj 0 C

(
h2,2j,j−1

)
Aj−1 0

C
(
h3,1j,j
)
Aj+1 C

(
h3,2j,j
)
Aj 0 0 C

(
h3,2j,j+1

)
Aj+1

 (27)

lowing design:

A1 =
[
B1:2 B3:5 B6

]
,

A2 =
[
B1:2 B7:9 B10

]
,

A3 =
[
B3:5 B7:9

]
.

(28)

The following lemma states the DoF achievability:
Lemma 1 (Gj full-rank for p = 2): Considering

(27) and the SPBs chosen as in (28), then the only
possible solution for (26) is λji = 0,∀i, j.

Proof: See Appendix B.
Finally, the optimal DoF are settled as follows:
Theorem 1 (DoF for the (2,3) case): The 3-user

(2, 3) MIMO IC with constant channel coefficients
has exactly 6/5 linear DoF per user.

Proof: Each user transmits d̂ = 12 real-valued
symbol streams along T = 5 symbol extensions in
time, considering ACS, and the precoding scheme
described in Section V-A. Therefore, according to
Lemma 1, the SSM Gj is full rank, thus interference
and desired signals become linearly independent,
and the desired symbols can be decoded. Since the
DoF outer bound in (10) and the achievable DoF
attained by the proposed scheme match, this value
corresponds to the optimal linear DoF.

VI. THE (p, p+ 1) CASE WITH p > 2

This section address the (p, p+ 1) MIMO IC
with constant channel coefficients and p ≥ 3. The
proposed proposed precoding scheme allows each
user to obtain d̂j = 2p (p+ 1) real-valued data
symbols over 2T = 2 (2p+ 1) channel extensions,
thus attaining the DoF outer bound of p(p+1)

2p+1
in (10).

Unfortunately, the number of conditions used for
the precoder design, see (20), increases with p2.
Therefore, the analysis using the approach for the
p = 2 case gets complicated as p grows. This
section presents a methodology to simplify the
resolution of such matrix equation system, which
will be illustrated for the p = 3 case. The core of
this methodology is the zero propagation algorithm,

which allows to obtain the structure of the transmit
and receive filters for any value of p.

A. Precoding matrix design
Out of the three alignment chains, let us consider

the first alignment chain (k = 1) given by (31),
shown at the top of the next page.The remaining
alignment chains are handled similarly.

It can be observed that thanks to the obtained
structure of matrix E, some sub-blocks of F are
zero. For example, consider the fifth block row
element of E · F:

C
(
h1,11,3

)
V1,1

3,(1) = 0 . (29)

Clearly, the only solution above is V1,1
3,(1) = 0 with

probability one. Hence, other equations where this
variable participates are simplified. Each of these
events is denoted as a zero propagation (ZP) and
give the possibility of finding which blocks are zero
for F in (31). Inspired by this idea, we present
the ZP algorithm, see Table I. This algorithm al-
lows simplifying the conditions initially presented
in (31), reducing the number of blocks to be de-
signed in (32). Moreover, by writing the remaining
equations it turns out that each precoding matrix can
be written as a function of three SPBs, as follows:

Vi =


C
(
θi−1,1i,(1)

)
Ai−1 0 0

C
(
θi−1,2i,(1)

)
Ai−1 C

(
θi+1,2
i,(1)

)
Ai+1 C

(
θi,2i,(1)

)
Ai

0 0 Ai

 ,
(30)

where θq,ri,(1) stands for the complex value obtained
from the qth alignment chain and located at the rth
block row of Vi. They can be obtained by com-
puting a null space basis from (32). Note that the
number of unknown sub-block matrices is reduced
from 27 in (31) to 3 in (30). In general, the p2

variables (block matrices) involved in each of the
three alignment chains can be written as a function
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

C
(
h1,12,1

)
0 0 0 0 0 0 0 0

0 C
(
h2,22,1

)
C
(
h2,32,1

)
C
(
h2,12,3

)
0 0 0 0 0

0 0 C
(
h3,32,1

)
C
(
h3,12,3

)
C
(
h3,22,3

)
0 0 0 0

0 0 0 0 0 C
(
h4,32,3

)
0 0 0

0 0 0 C
(
h1,11,3

)
0 0 0 0 0

0 0 0 0 C
(
h2,21,3

)
C
(
h2,31,3

)
C
(
h2,11,2

)
0 0

0 0 0 0 0 C
(
h3,31,3

)
C
(
h3,11,2

)
C
(
h3,21,2

)
0

0 0 0 0 0 0 0 0 C
(
h4,31,2

)





V1,1
1,(1)

V1,2
1,(1)

V1,3
1,(1)

V1,1
3,(1)

V1,2
3,(1)

V1,3
3,(1)

V1,1
2,(1)

V1,2
2,(1)

V1,3
2,(1)



= 0

E · F = 0 (31)


C
(
h2,22,1

)
C
(
h2,32,1

)
0 0 0

0 C
(
h3,32,1

)
C
(
h3,22,3

)
0 0

0 0 C
(
h2,21,3

)
C
(
h2,11,2

)
0

0 0 0 C
(
h3,11,2

)
C
(
h3,21,2

)



V1,2
1,(1)

V1,3
1,(1)

V1,2
3,(1)

V1,1
2,(1)

V1,2
2,(1)

 = 0 (32)

TABLE I
ZERO PROPAGATION ALGORITHM

Consider the matrix equation system given by E · F = 0, with F∈RFBR·rF×FBC

and E∈REBR·rE×FBR·rF , where rF(rE) defines the number of block rows of F
(E). Moreover, FBC (FBR) defines the number of columns (rows) of each
block element of F, and EBR defines the number of rows of each block
column of E. The blocks of F that can be set to zero may be obtained by
computing the following steps:

1. Find one block row in E containing only one non-zero element,
located at the [r∗, c∗]th block position.

2. Set

{
E(r∗, :) = zeros(EBR, FBR · rF)

E(:, c∗) = zeros(EBR · rE, FBR)

3. Set F(c∗, :) = zeros(FBR, FBC).

4. Repeat (1)-(3) until (1) provides no more block rows.

5. Remove the all-zeros block columns and block columns in E and
F, respectively.
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of one SPB of dimension 2(2p+1)×2(p+1). Hence,
after applying the ZP algorithm the problem reduces
to the design of the three SPBs, one obtained from
each alignment chain.

B. Achievability proof
This section derives the SSM for the p = 3 case,

and generalizes the ideas for p > 3. First, a design
for the three SPBs in (30) is proposed, generalizing
(28) for any value of p. Second, the SSM is shown to
be full rank, thus the optimal linear DoF are stated
in Theorem 2.

In order to build Gj , it is necessary to compute a
basis for the sum space defined by the received in-
terference and desired signals. Regarding the desired
signals, it can be easily seen that Gdes

j = Hj,jVj .
On the other hand, since some of the interference is
aligned it is necessary to first calculate the products
Hj,j−1Vj−1 and Hj,j+1Vj+1. Next, we will see that
this task can be highly alleviated. Note that the ZP
algorithm output in (32) not only states which sub-
blocks of each Vi are actually zero, but also which
conditions should be satisfied by the remaining sub-
blocks. For example, (32) forces

C
(
h2,22,1

)
V1,2

1,(1) + C
(
h2,32,1

)
V1,3

1,(1) = 0 (33)

Interestingly, this is indeed one of the elements
resulting from the product H2,1 V1. Taking into
account all other conditions where there are only
elements managed by one unique transmitter, the
products Hj,j−1Vj−1 and Hj,j+1Vj+1 can be fur-
ther simplified, obtaining (37)-(38), where θ̄q,rj,i is
the corresponding complex number for the (q,r)th
position of Hj,iVi, i 6= j. Note that in this case due
to alignment conditions, we will have θ̄q,qj,j−1 = θ̄q,q−1j,j+1

with q = 2, 3, i.e. columns {2, 3} of Hj,j+1Vj+1

are aligned with columns {1, 2} of Hj,j−1Vj−1,
respectively. Therefore, in this case the SSM is
given by (39)-(40), where Gdes

j (q, r) and θ̂q,rj are
the matrix and the complex number corresponding
to the (q,r)th position of Gdes

j and Gint
j , respectively.

For Gdes
j , we write the blocks Gdes

j (q, r), because
they are linear combinations of some extended chan-
nel elements, e.g.

Gdes
j (1, 2) = C

(
h1,11,1

)
−C

(
h2,21,1h

3,1
3,1

h3,23,1

)
.

Notice that each matrix C
(
θ̂q,rj
)

in Gint
j is a com-

bination of a number of cross-channels coefficients,

thus it can be assumed independent of any of the
matrices Gdes

j (q, r), which are also function of direct
channel coefficients.

In contrast to (27), now it is not clear if the
SSM for this case is full-rank by just taking the
SPBs randomly. Next, we provide the proof to verify
that Gj is full rank. Magnitudes are defined for a
general value of p, and all possible procedures are
generalized.

As before, the SSM may be shown to be full rank
iff all λji ∈R2(2p+1)×1, i = 1 . . . 2p + 1, j = 1, 2, 3
constrained by

Gj

[ (
λj1
)T

. . .
(
λj2p+1

)T ]T
= 0 (34)

are actually equal to zero. Define an orthonormal
basis B =

[
b1,b2 . . .b2(2p+1)

]
∈R2(2p+1)×2(2p+1) and

X1 = {3, 4, . . . , p+ 3} ,

X2 = {p+ 4, p+ 5, . . . , 2p+ 2} ,

Y1 = {2p+ 3, . . . , 3p+ 3} ,

Y2 = {3p+ 4, . . . , 4p+ 2} ,

Z = {1, 2} .

(35)

Hereafter, we use these sets to arrange columns of
B, e.g. BX2 = Bp+4:2p+2. Accordingly, we set:

A1 =
[
BZ BX1 BX2

]
,

A2 =
[
BZ BY1 BY2

]
,

A3 =
[
BX1 BY1

]
.

(36)

Given these definitions, the following lemma states
the DoF achievability:

Lemma 2 (Gj full-rank for p = 3 . . . 6): For the
3 ≤ p ≤ 6 cases, the SSM defined as in (13) with
SPBs chosen as in (36) is full rank with probability
one.

Proof: See Appendix C.

Finally, the DoF characterization for p = 3 . . . 6
follows from Lemma 2, and it is next formalized:

Theorem 2 (DoF of the (p, p+1) IC, p = 3 . . . 6):
The 3-user (p, p+ 1), 3 ≤ p ≤ 6 MIMO IC with
constant channel coefficients has exactly p(p+1)

2p+1
linear DoF per user.

Proof: The proof is analogous to the proof
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Hj,j−1 Vj−1 =


C
(
θ̄1,1j,j−1

)
Aj+1 0 0

C
(
θ̄2,1j,j−1

)
Aj+1 C

(
θ̄2,2j,j−1

)
Aj 0

0 0 C
(
θ̄3,3j,j−1

)
Aj−1

0 0 0

 (37)

Hj,j+1 Vj+1 =


0 0 0

C
(
θ̄2,1j,j+1

)
Aj 0 0

0 C
(
θ̄3,2j,j+1

)
Aj−1 C

(
θ̄3,3j,j+1

)
Aj+1

0 0 C
(
θ̄4,3j,j+1

)
Aj+1

 (38)

Gdes
j =


Gdes

j (1, 1) Aj−1 Gdes
j (1, 2) Aj+1 Gdes

j (1, 3) Aj

Gdes
j (2, 1) Aj−1 Gdes

j (2, 2) Aj+1 Gdes
j (2, 3) Aj

Gdes
j (3, 1) Aj−1 Gdes

j (3, 2) Aj+1 Gdes
j (3, 3) Aj

Gdes
j (4, 1) Aj−1 Gdes

j (4, 2) Aj+1 Gdes
j (4, 3) Aj

 (39)

Gint
j =



C
(
θ̂1,1j

)
Aj+1 0 0 0

C
(
θ̂2,1j

)
Aj+1 C

(
θ̂2,2j

)
Aj 0 0

0 0 C
(
θ̂2,3j

)
Aj−1 C

(
θ̂2,4j

)
Aj+1

0 0 0 C
(
θ̂3,4j

)
Aj+1


(40)

of Theorem 1. In general, the optimal linear DoF
are achieved by using the proposed transmission
scheme, delivering d̂j = 2p(p+1) symbol streams to
each user along 2T = 2(2p+ 1) symbol extensions
in time, and considering ACS.

We would want to remark that we have only ana-
lytically proved the cases p = 2, 3, . . . , 6. Nonethe-
less, based on the explained methodology and some
numerical results (see next section), we conjecture
that the ZP algorithm provides full rank SSMs for
p > 6, and hence the optimal DoF can be attained
and proved:

Conjecture 1 (DoF for the general (p, p+ 1) IC):
The 3-user (p, p+ 1) MIMO IC with constant
channel coefficients has exactly p(p+1)

2p+1
linear DoF

per user for p > 6, and they can be achieved by
means of applying subspace alignments chains,
symbol extensions in time and ACS.

VII. NUMERICAL RESULTS

In order to validate the contributions of this work,
as well as increase the strength of Conjecture 1,
we simulate the cases p = 2, 3, 5, 6, 8, 9 for the
3-user MIMO IC. Two schemes are simulated, the
one proposed in this work, and the design in [4]
not considering ACS. In both cases, we apply the
CoB operation and the additional transformations
as explained in Appendix A together with the
proposed scheme. Results are shown in Fig. 3,
where solid/dashed lines denote the two schemes
with/without considering ACS. It can be seen that
the scheme considering ACS improves the slope
achieved at high SNR for each case. Moreover, for
the cases p > 6 simulated, the slope at high SNR
follows our conjecture on the DoF.
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Fig. 3. Comparison of using IA with the proposed channel extension
(solid lines) with respect to using only symbol extensions in time
(dashed lines).

VIII. CONCLUSIONS

This work has investigated the linear DoF of the
3-user (p, p + 1) MIMO Interference Channel with
constant channel coefficients and full channel state
information at both sides. By means of the proposed
precoding scheme, the optimal linear DoF achiev-
ability has been proved for the cases p = 2 . . . 6.
Moreover, a methodology has been presented easing
the proof for any value of p, where we conjecture
that the optimal linear DoF can also be attained.
This conjecture has been numerically checked for
two cases.

The contribution of this work is twofold. On the
one hand, we have shown that the use of asymmetric
complex signaling together with the previous state-
of-the-art approach in [4] allows characterizing the
linear DoF of this channel. Therefore, we have
provided a formal proof, and uncoupled the achiev-
ability statement from numerical experiments. On
the other hand, our results revealed that, except for
the SISO case, the same DoF can be achieved using
linear IA with respect to lattice alignment.

Future work is oriented to avoid the need of
using lattice alignment schemes also for the SISO
case, where linear DoF inner and outer bounds have
not yet been found. Also, it may be interesting
to optimize not only the slope of the sum-rate
curve at the high SNR regime, but also the SNR
offset. Further improvement seems to be possible
by optimizing the SPBs in terms of the sum-rate

subject to some transmit power constraint.

APPENDIX A
ADDITIONAL CHANGE OF BASIS AT THE

RECEIVER SIDE

The CoB operation [4] is a tool that provides a
predetermined structure for the cross-channel ma-
trices. In particular, it forces zeros at some spe-
cific antenna elements. For example, the equivalent
cross-channel matrices

{
H̃j,j−1, H̃j,j+1

}
for p = 3

after performing the original CoB described in [4]
are given by (42). Here we assume that the CoB
at the receiver Rj is the product of two matrices:
the original CB and an additional combining matrix
Υj ∈ R2T (p+1)×2T (p+1) such that (43) is satisfied.
Then, each block row of Υj =

[
υTj,1, . . . ,υ

T
j,4

]T is
derived as follows:

υj,1 =
[

I2T 0
]
,

υj,2 = null
([

H̃j,j−1
(

:, 1
)
, H̃j,j+1

(
:, 2 : 3

)])
,

υj,3 = null
([

H̃j,j−1
(

:, 1 : 2
)
, H̃j,j+1

(
:, 3
)])

,

υj,4 =
[

0 I2T
]
,

where A(:, b : c) gives the matrix resulting from
picking the entries of A from block column b to c,
and I2T ∈R2T×2T , 0∈R2T×2Tp are the identity and
all-zero matrices.

APPENDIX B
PROOF OF LEMMA1

We will prove the lemma for the system of
equations defined for j = 1. The cases j = 2, 3 can
be similarly handled, and they are omitted to avoid
redundancy. Therefore, we drop the supraindex j
and write λi, i = 1, . . . 5 to simplify notation. Addi-
tionally, some rank-preserving transformations will
be applied to Gj . Consequently, the matrix equation
system in (26) for j = 1 can be written as follows:

C
(
h1,11,1

)
A2λ1 + A1λ3 = 0,

C
(
h2,11,1

)
A2λ1 + C

(
h2,21,1

)
A1λ2 + A3λ4 = 0, (41)

C
(
h3,21,1

)
A1λ2 + A2λ5 = 0,

which can be simplified by introducing (28), and by
means of linear independence among the vectors bi.
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[
H̃j,j−1, H̃j,j+1

]
=



C
(
h̃1,1j,j−1

)
0 0 0 0 0

C
(
h̃2,1j,j−1

)
C
(
h̃2,2j,j−1

)
C
(
h̃2,3j,j−1

)
C
(
h̃2,1j,j+1

)
0 C

(
h̃2,3j,j+1

)
C
(
h̃3,1j,j−1

)
0 C

(
h̃3,3j,j−1

)
C
(
h̃3,1j,j+1

)
C
(
h̃3,2j,j+1

)
C
(
h̃3,3j,j+1

)
0 0 0 0 0 C

(
h̃4,3j,j+1

)


(42)

Υj

[
H̃j,j−1, H̃j,j+1

]
=



C
(
h1,1j,j−1

)
0 0 0 0 0

0 C
(
h2,2j,j−1

)
C
(
h2,3j,j−1

)
C
(
h2,1j,j+1

)
0 0

0 0 C
(
h3,3j,j−1

)
C
(
h3,1j,j+1

)
C
(
h3,2j,j+1

)
0

0 0 0 0 0 C
(
h4,3j,j+1

)


(43)

For instance, consider all equations corresponding
to B1:2 in (41):

C
(
h1,11,1

)
bq λ1 (q) + bq λ3 (q) = 0, (44)

C
(
h2,11,1

)
bq λ1 (q) + C

(
h2,21,1

)
bq λ2 (q) = 0, (45)

C
(
h3,21,1

)
bq λ2 (q) + bq λ5 (q) = 0, (46)

with q = 1, 2. Each of such equations can be
simplified as follows. Let us define:

b̃q =



bq (1) + jbq (2)

bq (3) + jbq (4)

...

bq (9) + jbq (10)


(47)

where bq = stack
(
bq(1), . . . , bq(10)

)
, j =

√
−1

stands for the imaginary unit, and q = 1, 2. Then,
as in [10], we can write (44)-(46) in terms of b̃q.
For instance, (44) can be rewritten as follows:∣∣h1,11,1

∣∣ ejφ1,11,1b̃q λ1 (q) + b̃q λ3 (q) = 0,∣∣h1,11,1

∣∣ ejφ1,11,1λ1 (q) + λ3 (q) = 0,
(48)

with q = 1, 2. Hence, equating real and imaginary
parts of each equation to zero, we have:∣∣h1,11,1

∣∣ sin (φ1,1
1,1

)
λ1(q) = 0,∣∣h1,11,1

∣∣ cos
(
φ1,1
1,1

)
λ1(q) + λ3(q) = 0,

(49)

with q = 1, 2. The set containing all the possible
values such that

∣∣h1,11,1

∣∣ sin (φ1,1
1,1

)
= 0 is a countable

set, thus it has zero measure [22]. By randomness
arguments the only solution is λr(q) = 0, r =
1, 3, q = 1, 2. Applying this methodology to all
equations derived from all groups of columns of B,
one finds out that all rank descriptors must be zero.

An alternative way to prove that the rank de-
scriptors associated to B1:2 must be zero is next
shown. Instead of developing (44) only, consider
all equations (44)-(46) in the form of (49). Then,
equating imaginary parts to zero, we have
∣∣h1,11,1

∣∣ sin (φ1,1
1,1

)
0∣∣h2,11,1

∣∣ sin (φ2,1
1,1

) ∣∣h2,21,1

∣∣ sin (φ2,2
1,1

)
0

∣∣h3,21,1

∣∣ sin (φ3,2
1,1

)

λ1(q)
λ2(q)

 = 0 .

(50)

We will refer to the 3×2 matrix at the left-hand side
of (50) as an elimination matrix. As long as we can
ensure it has no right null space, all rank descriptors
in (50) can be set to zero. In this case, this is
trivially ensured by means of randomness arguments
and the matrix dimensions. Likewise, using the real
counterpart of (50), we have λi(q) = 0, i = 3, 5,
q = 1, 2. By the same rationale applied to each
group of columns of B, we obtain an elimination
matrix for each case, and it is easy to check that
none of them has right null space, thus all rank
descriptors are definitely equal to zero.

So far we have proved that considering ACS
is sufficient for achieving a full rank SSM. In
what follows, we explain why it is necessary when
using the scheme based on alignment chains. In this
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regard, notice that if only symbol extensions in time
are employed, a set of equations similar to (44)-(46)
is obtained, and we have

h1,11,1λ1(q) + λ3(q) = 0

h2,11,1λ1 (q) + h2,21,1λ2 (q) = 0

h3,21,1λ2 (q) + λ5(q) = 0

(51)

written in matrix form as
h1,11,1 0 1 0

h2,11,1 h2,21,1 0 0

0 h3,21,1 0 1



λ1(q)

λ2(q)

λ3(q)

λ5(q)

 = 0, (52)

with q = 1, 2. Note that the matrices C(·) disappear.
This is because when only symbol extensions in
time are applied, each channel element becomes
a scaled identity matrix, see (4). Also, notice that
the rank descriptors are now complex magnitudes.
Therefore, the elimination matrix is a 3×4 full-row
rank matrix having a one-dimensional null space.
Consequently, the SSM becomes rank deficient,
since there are some rank descriptors different from
zero and desired signals cannot be linearly separated
from interference.

APPENDIX C
PROOF OF LEMMA2

Due to similarity with the proof for p = 2, we
elaborate a sketch of the proof for p = 3 and provide
intuition of the proof for cases p = 4, 5, 6 by means
of examples of its elimination matrices.

The SSM for p = 3 is constructed by using
(37)-(38). As before, without loss of generality we
consider receiver 1 only. In this case, after applying
some full-rank linear transformations to the SSM,
the following system of four equations is obtained:[
C
(
h1,11,1

)
−C

(
αdes
1,1

)]
A3 λ1 + C

(
h1,21,1

)
A2 λ2

+
[
C
(
h1,31,1

)
−C

(
αdes
1,2

)]
A1λ3 + C

(
h1,11,3

)
A2λ4 = 0,[

C
(
h2,11,1

)
−C

(
αdes
2,1

)]
A3λ1 + C

(
h2,21,1

)
A2 λ2

−C
(
αint
1

)
A2λ4 + A1 λ5 = 0,

C
(
h3,21,1

)
A2 λ2 +

[
C
(
h3,31,1

)
−C

(
αdes
3,2

)]
A1λ3

+ A3 λ6 −C
(
αint
2

)
A2λ7 = 0,[

C
(
h411,1
)
−C

(
αdes
4,1

)]
A3λ1 + C

(
h421,1
)

A2 λ2

+
[
C
(
h4,31,1

)
−C

(
αdes
4,2

)]
A1λ3 + C

(
h4,31,2

)
A2 λ7 = 0,

where the SPBs are chosen as in (36), i.e:

A1 =
[
B1:2 B3:6 B7:8

]
,A3 =

[
B3:6 B9:12

]
,

A2 =
[
B1:2 B9:12 B13:14

]
,

and

αdes
q,1 =

hq,21,1h
3,1
3,1

h3,23,1

, αdes
q,2 =

hq,21,1h
2,3
2,1

h2,22,1

,

αint
1 =

h2,21,3h
3,1
2,3

h3,22,3

, αint
2 =

h3,21,2h
2,3
3,1

h2,23,1

.

A full-rank SSM is obtained as long as all rank
descriptors λi, i = 1, . . . , 7 are equal to the zero
vector. For instance, consider the elimination ma-
trix in (53), obtained for the group Z (see (35))
after applying similar steps as in Appendix B, and
equating imaginary parts to zero. Notice that this
elimination matrix is full rank almost surely, since
each row contains at least one element of the direct
channel. Therefore, all rank descriptors involved in
(53) can be set to zero.

Similar ideas apply to cases p = 4, 5, 6. For
the sake of brevity, we show only the elimination
matrix analogous to (53) for each of those cases
at the next page, see (54)-(56). Following similar
arguments discussed above, it can be ensured that
all the elimination matrices are full rank, they have
no right null space, and thus all involved rank
descriptors can be set to zero. Note that to simplify
notation we have used the function ψ(a, b), defined
as the sum of the sinusoidal functions corresponding
to the position (a, b) of each elimination matrix.
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
∣∣h1,21,1

∣∣ sin (φ1,2
1,1

) ∣∣h1,31,1

∣∣ sin (φ1,3
1,1

)
−
∣∣αdes

1,2

∣∣ sin (αdes
1,2

) ∣∣h1,11,3

∣∣ sin (φ1,1
1,3

)
0∣∣h2,21,1

∣∣ sin (φ2,2
1,1

)
0 −

∣∣αint
1

∣∣ sin (αint
1

)
0∣∣h3,21,1

∣∣ sin (φ3,2
1,1

) ∣∣h3,31,1

∣∣ sin (φ3,3
1,1

)
−
∣∣αdes

3,2

∣∣ sin (αdes
3,2

)
−
∣∣αint

1

∣∣ sin (αint
1

)
−
∣∣αint

2

∣∣ sin (αint
2

)∣∣h421,1∣∣ sin (φ42
1,1

) ∣∣h4,31,1

∣∣ sin (φ4,3
1,1

)
−
∣∣αdes

4,2

∣∣ sin (αdes
4,2

) ∣∣h4,31,2

∣∣ sin (φ4,3
1,2

)
0




λ2(q)

λ3(q)

λ4(q)

λ7(q)

=0

(53)

p = 4 :

0 ψ (1, 2) ψ (1, 3) 0

ψ (2, 1) 0 ψ (2, 3) 0

0 ψ (3, 2) 0 ψ (3, 4)

ψ (4, 1) ψ (4, 2) ψ (4, 3) ψ (4, 4)

ψ (5, 1) 0 ψ (5, 3) ψ (5, 4)




λ1(q)

λ3(q)

λ4(q)

λ9(q)

 = 0 (54)

p = 5 :

ψ (1, 1) 0 0 0 ψ (1, 5) 0

ψ (2, 1) ψ (2, 2) ψ (2, 3) ψ (2, 4) ψ (2, 5) 0

0 ψ (3, 2) 0 ψ (3, 4) ψ (3, 5) 0

ψ (4, 1) 0 ψ (4, 3) 0 0 ψ (4, 6)

ψ (5, 1) ψ (5, 2) ψ (5, 3) ψ (5, 4) 0 ψ (5, 6)

0 ψ (6, 2) 0 0 0 ψ (6, 6)





λ1(q)

λ2(q)

λ4(q)

λ5(q)

λ9(q)

λ11(q)


= 0 (55)

p = 6 :

0 0 0 ψ (1, 4) ψ (1, 5) 0 0

0 0 ψ (2, 3) 0 ψ (2, 5) ψ (2, 6) 0

ψ (3, 1) ψ (3, 2) ψ (3, 3) ψ (3, 4) ψ (3, 5) ψ (3, 6) 0

0 ψ (4, 2) 0 ψ (4, 4) 0 ψ (4, 6) 0

ψ (5, 1) 0 ψ (5, 3) 0 0 0 ψ (5, 7)

ψ (6, 1) ψ (6, 2) ψ (6, 3) ψ (6, 4) 0 0 ψ (6, 7)

0 ψ (7, 2) 0 ψ (7, 4) 0 0 ψ (7, 7)





λ2(q)

λ3(q)

λ5(q)

λ6(q)

λ7(q)

λ8(q)

λ13(q)


= 0 (56)
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