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Abstract—Received Signal Strength (RSS) localization is widely
used due to its simplicity and availability in most mobile devices.
The RSS channel model is defined by the propagation losses
and the shadow fading. These parameters might vary over time
because of changes in the environment. In this paper, the problem
of tracking a mobile node by RSS measurements is addressed,
while simultaneously estimating a two-slope RSS model. The
methodology considers a Kalman filter with Interacting Multiple
Model architecture, coupled to an on-line estimation of the
observation’s variance. The performance of the method is shown
through numerical simulations in realistic scenarios.

I. INTRODUCTION

The need for localization is not just confined to persons
or vehicles of transportation in outdoor environments where
Global Navigation Satellite Systems (GNSS) play an impor-
tant role for this purpose. But accurately estimating location
indoors, GNSS features remains a difficult problem because of
signal blockage or severe attenuations.

Due to the present ubiquitous availability of powerful mobile
computing devices, the bloom of personalized context- and
localization-aware applications has become an active field of
research. A way of localization in indoor environments is
using signals of opportunity such as WLAN (IEEE 802.11x),
Zigbee, UWB, etc. The advantage of working with signals
of the IEEE 802.11 as the primary source of information to
approach the localization problem is the inexpensive hardware
and the already dense deployment of WLAN Access Points
(APs) in urban areas.

The goal of this work is tracking a mobile path in a indoor
environment using an existing WLAN infrastructure where
several position-related measurements are available. Here we
are interested in algorithms that use Received Signal Strength
(RSS) observations for locating and tracking the mobile node,
since most of mobile devices are equipped with wireless
capability [1]. To achieve this aim, a Kalman filtering is
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considered to perform the sequential tracking in a two-slope
RSS model, for which we use an Interacting Multiple Model
(IMM) architecture.

There are several channel models in the literature to char-
acterize the indoor propagation environment [2], [3]. In this
paper, the IEEE 802.11x model is considered because does
not require an accurate floor plan of the indoor scenario and
can be implemented without using a third party software [4].

This work uses the path loss two-slope model [5], which
is a mathematical model of RSS that relates the path loss
attenuation with distance. This means that the distance data
between the mobile target and the AP can be described by
two models which depend on a breakpoint distance value.
This channel model is used to design two kalman filters and
an Interacting Multiple Model (IMM) is used to dynamically
combine the outputs from these two filters [6]. IMM technique
is used to estimate the mode (mixing) probabilities for each
model based Kalman filters and mix the two filter results based
on the mode probabilities. Several works used IMM techniques
for location and control applications [7], [8].

The paper is organized as follows. In Section II the System
model and state-space model are presented, which has two
path loss regions depending on the distance to the Access
Point. The EKF-IMM algorithm and mobile tracking model
are explained in Section III. Chanel calibration is presented
in Section IV . Section V shows computer simulations and
Section VI concludes the paper.

II. SYSTEM MODEL

We are interested in tracking a mobile device using RSS
measurements from a set of N APs. The estimation is per-
formed in two steps: i) estimation of relative distances to the
set of visible APs; ii) fusion of these distance measurements
into a blended tracking solution. In this section, we present the
peculiarities of the two-slope RSS model and the state-space
formulation of the distance estimation problem.

A. Two-slope RSS model
The widely used model for RSS observations is the path

loss model, which is a simple yet realistic model for such
measurements. It is parameterized by the path loss exponent
and the shadowing. However, it has been observed in ex-
perimental campaigns that these parameters fluctuate and are
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indeed distance dependant. As a conclusion, the parameters
employed in the traditional path loss model are highly site-
specific [9] [10].

In this work we consider an extension of the classical path
loss model accounting for two regions of propagation, referred
to as the two-slope model [5]. Path loss refers to the average
loss in signal strength over distance. For indoor environments,
the path loss depends on the relative distance between the AP
and the sensing device [11]. For far distances (e.g., 5 ≥ d ≥
30 meters), path reflections from the environment (specially
reflections from surrounding walls) generally result in a steeper
overall drop in the signal strength at the receiver. Under this
model, the RSS for the r-th AP (r = 1, 2, . . . , N total number
of APs) to the mobile target is modeled as [5]:

RSSr(d) =

 h(1)(d) + χσ2
1

if d ≤ dbp
h(2)(d) + χσ2

2
if d > dbp

(1)

where d is the relative distance between the AP and the moving
node were the RSS was measured, and

h(1)(d) =10α1 log10(d) (2)

h(2)(d) =10α1 log10(dbp) + 10α2 log10(d/dbp) . (3)

The first equation gives the path loss (in decibels) for close
distances (distances less than dbp, known as the breakpoint
distance) and the second equation gives the path loss beyond
dbp. The α1 and α2 values are the path loss exponents, defining
the slopes before and after dbp, respectively. The functions
h(1)(d) and h(2)(d) were obtained by measurement campaigns
using radio signal ray tracing methods, premeasured RSS
contours centered in the receiver or multiple measurements
at several base stations [1], [12], [13].

Shadow fading is the variation of the nominal RSS measure-
ments due to the transmitter/receiver geometrical configuration
and can be modeled by an additive zero-mean Gaussian
random variable. The notation, χσ2

i
∼ N (0, σ2

i ) is used. As
happens for the path loss exponents, the variance values differ
before and after the breakpoint distance. Typically the values
depend on the scenario but in all cases it is observed that σ2

1
< σ2

2 and α1 < α2. Figure 1 of [14] represents a simulation of
real measurements taken from the two-slope path loss model
at different relative distances between one AP and the mobile
target.

B. State-space model
As previously stated, the proposed strategy to solve the

localization problem uses a two-step approach. In the first step
(i.e., distance estimation) and for the rth AP, the observations
correspond to the RSS measurements and the unknown states

to be sequentially inferred are θrk =
[
drk ḋrk

]T
where drk is

the distance between the mobile and the r-th AP and ḋrk is the
rate of change of this distance. We assume a linear evolution
of states in the form of θrk = Aθrk−1 +Bvrk, where Bvrk is the
process noise accounting for possible modeling mismatches,
such as a possible acceleration of the mobile. In other words,

this noise term gathers different forces that could affect target’s
dynamics and which are not explicitly modeled. The process
noise is normally distributed with zero mean and covariance
matrix Qk = σ2

dBBT [15]: where σ2
d models the uncertainty

on the mobile dynamics.The state equation includes these
matrices:

A =

1 ∆t

0 1

 ; B =

∆t2

2

∆t

 (4)

where ∆t is the sampling period.
To complete the state-space representation, the observation

vector is defined. In this case, the RSS measurements per AP
are precisely the observations used to infer θrk, and thus yrk ,
RSSr(dk) = h(dk) + nk where we recall that the model for
RSSr(d) depends on the breakpoint distance. Therefore, h(·)
has to be selected according to (1) and the statistics of the
measurement noise as well, that is whether its variance is σ2

1
or σ2

2 .
In this work, a solution involving an Extended Kalman

filter (EKF) is considered to deal with the nonlinear filtering
problem, for which we have to derive the Jacobian matrix of
the measurements function because h(1) and h(2) are nonlinear.
The 2× 1 Jacobian matrices H

(1)
k and H

(2)
k are

H
(1)
k =

[
α1

log 10
10
d 0

]
; H

(2)
k =

[
α2

log 10
10
d 0

]
. (5)

III. INTERACTIVE MULTIPLE MODEL APPROACH

The main goal in the RSS-based localization problem is to
infer the distance to each AP, and the corresponding distance
rate, from a set of N RSS measurements. The main concern
of this section is to present and justify the reasoning behind
the use of an IMM-based approach to solve such problem.

A. Parallel IMM-based solution
The first approach that comes to mind to solve this problem

is the use of a traditional filtering solution, such as the EKF,
where the observation accounts for the full set of RSS mea-
surements yk = [y1

k, ..., y
N
k ]T and the global state evolution

takes into account the N individual states, θk = [θ1
k; ...;θNk ] .

But it is straightforward to see from (1) that this is not a valid
approach, because the measurement model directly depends on
the breakpoint distance. The two-slope model can be used to
model the distance between the AP and the mobile node but
both implicit models must be treated separately. The natural
solution to overcome this model-switching problem is to use
an IMM-based approach.

The key idea behind the IMM is to use a bank of M
KFs, each one designed to cope with a specific model (or
model set), and to obtain the state estimation as a clever
combination of the individual estimates. If the full set of N
independent observations zk is considered, the question that
arises is how many KFs should be considered into the IMM
As each independent observation may obey model 1 or model
2, the answer is 2N filters (i.e., all the possible combinations
of model 1 and 2 for the N observations). It is clear that this
is not a practical solution for an arbitrary number of APs,
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Fig. 1. Complete IMM Architecture with parameters estimation for every k instant.

therefore, a divide-and-conquer strategy treating independent
measurements separately is the best solution. In this contri-
bution a parallel IMM-based approach is adopted, considering
N IMMs each one involving 2 KFs according to the two path
loss models (shown in Figure 1).

At each discrete-time instant k, the IMM algorithm follows
a clear three step architecture: Reinitialization, KF and Model
probability. The final estimates are obtained as a combination
of the individual KF outputs using the corresponding model
likelihoods. Mathematically, one cycle of the standard IMM
associated to the rth RSS measurement is sketched in Algo-
rithm 1, where πji (for i, j = 1, 2) is a two-state Markov
model transition probability matrix and is set in the proposed
algorithm as, πji = [0.9950.005; 0.0050.995] for each AP.

Notice that in its standard form, both the two-slope model
parameters and the process noise variance must be specified
in the IMM. These parameters must be set to the true ones
for an optimal solution. Moreover, the initialization of both
EKFs and each AP,

{
θ̂

(i),r
0|0 ,P

(i),r
0|0 for i = 1, 2

}
, must be set

according to the problem at hand. The error covariance matrix
has a initial value assigned as P

(i),r
0|0 = 4Qk for each AP. The

initial value state vector for the filter is θ̂(i),r
0|0 =θr0 + ω where

ω ∼ N (0, 0.8I2). The initial model probabilities are set as
ηr(1),k = ηr(2,)k = 0.5 for every AP also.

B. Location Calculation Model

The location calculation is solved with a KF using the
N distance estimates obtained from the bank of IMMs as
observations (see Figure 1). In the following, the location
calculation model is detailed:

The state vector gathers the mobile position and velocity,
xk = [xk, yk, ẋk, ẏk], and the observations vector is defined
as zdk =

[
d1,k ... dN,k

]
, where dr,k , θ̂rk|k(1) is the

distance obtained from the rth IMM. The state equation is
xk = Aposxk−1 + Bposwk, where the resulting Gaussian
process noise has a covariance matrix Qpos,k = σ2

pBposB
T
pos,

σ2
p is the variance related to the mobile acceleration, and

Apos =


1 0 ∆t 0

0 1 0 ∆t

0 0 1 0

0 0 0 1

 ; Bpos =


∆t
2 0

0 ∆t
2

∆t 0

0 ∆t

 . (18)

Assuming that the mobile target has an average velocity of 1
m/s in the simulations presented in this work, so a small initial
value for σ2

p of 0.7m/s2 is chosen.
The observation equation is zdk = hk(xk) + νk

where the observation error νk is modeled as an uncor-
related white Gaussian noise with covariance Rpos,k =
diag(P1

k|k(1, 1), ...,PNk|k(1, 1)), the nonlinear observation
function hk(xk) is defined as the distance of the mobile to
every anchor point,

hk =


√

(xk − x1
AP )2 + (yk − y1

AP )2

...√
(xk − xNAP )2 + (yk − yNAP )2

 =


d1,k

...

dN,k

 , (19)

where {xrAP , yrAP } is the position of the rth AP, and the
jacobian used to implement the EKF is given by

Hk =


xk−x1

AP

d1,k

yk−y1AP

d1,k
0 0

...
...

xk−xN
AP

dN,k

yk−yNAP

dN,k
0 0


∣∣∣∣∣∣∣∣∣
xk=x̂k|k−1

.
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Algorithm 1 Cycle k of the IMM for the rth AP
1: For i = 1, 2 and j = 1, 2

2: Reinitialization:

Calculation of the predicted mode probability, mixing weights, mixing
estimates and mixing covariances, respectively,

η
(i),r
k|k−1

=
∑
j

πjiη
(j),r
k−1 ; η

j|i,r
k−1 =

πjiη
(j),r
k−1

η
(i),r
k|k−1

(6)

θ̄
(i),r
k−1|k−1

=
∑
j

θ̂
(j),r
k−1|k−1

η
j|i,r
k−1 (7)

P̄
(i),r
k−1|k−1

=
∑
j

[P
(j),r
k−1|k−1

+ (θ̄
(i),r
k−1|k−1

− θ̂
(j),r
k−1|k−1

) (8)

× (θ̄
(i),r
k−1|k−1

− θ̂
(j),r
k−1|k−1

)′]η
j|i,r
k−1

3: Model-conditioned std. KF:
Prediction, innovations’ covariance matrix, Kalman gain, state estimate
and the corresponding error covariance matrix, are given by

θ̂
(i),r
k|k−1

= Aθ̄
(i),r
k−1|k−1

; P
(i)
k|k−1

= AP̄
(i),r
k−1|k−1

AT + Q
(i)
k (9)

S
(i),r
k = H

(i),r
k P

(i),r
k|k−1

(H
(i),r
k )T +R(i) (10)

K
(i),r
k = P

(i),r
k|k−1

(H
(i),r
k )T (S

(i),r
k )−1 (11)

θ̂
(i),r
k|k = θ̂

(i),r
k|k−1

+ K
(i),r
k (yrk −H

(i),r
k θ̂

(i),r
k|k−1

) (12)

P
(i),r
k|k = P

(i),r
k|k−1

−K
(i),r
k S

(i),r
k (K

(i),r
k )T (13)

4: Model probability update:
The model likelihood function and model probability are respectively

L
(i),r
k = N (z̃

(i),r
k ; 0, S

(i),r
k ) (14)

η
(i),r
k =

η
(i),r
k|k−1

L
(i),r
k∑

j η
(j),r
k|k−1

L
(j),r
k

(15)

5: Estimate fusion:

θ̂r
k|k =

∑
i

θ̂
(i),r
k|k η

(i),r
k (16)

Pr
k|k =

∑
i

[P
(i),r
k|k + (θ̂r

k|k − θ̂
(i),r
k|k )(θ̂r

k|k − θ̂
(i),r
k|k )′]η

(i),r
k (17)

The initial value state vector for the filter is x̂0|0 = x0 + ω,
with ω ∼ N (0, 0.8I4).

IV. MAXIMUM LIKELIHOOD COVARIANCE ESTIMATOR
FOR MODEL CALIBRATION

In the proposed methodology, each IMM inherently treats
this model uncertainty by computing the model likelihood from
the innovations of each KF. For each AP r and model i, the
model probability is given by η

(i),r
k . These probabilities are

used into the filter to weight the outputs of the individual KFs
and for the model calibration. At each time step and using
these model probabilities, two subsets of RSS measurements
are constructed: if η(1),r

k > η
(2),r
k , the RSS measurement yrk

is associated to yr1,k (i.e., which represents the RSS measure-
ments subset obeying Yr1,k, otherwise, it is associated to Yr2,k).
The cardinality of these sets is upper bounded by the present
time instant, Li , |Yri,k| < k ; i = 1, 2, and that their sum

is precisely Yr1,k| + Yr2,k| = k. For the sake of clarity in the
forthcoming derivations, the elements in the sets are defined
as Yri,k = {yri,1, . . . , yri,L1

}. For the rth AP, the `th sample
of the i model subset Yri,k at time k is Gaussian distributed,
yr1,` ∼ N (h(1)(d`)

r, σ2,r
1 ) and yr2,` ∼ N (h(2)(d`)

r, σ2,r
2 ).

Using this subset and assuming a known distance to the rth
AP, dr` , at instant k the ML σ2

1 and σ2
1 estimators is given by

σ̂2,r
1,k =

1

L1

L1∑
`=1

(
yr1,` − ȳr1,`

)2
(20)

σ̂2,r
2,k =

1

L2

L2∑
`=1

(
yr2,` − ȳr2,`

)2
, (21)

V. RESULTS

The method proposed in this work was validated by com-
puter simulations in an scenario depicted in Fig. 2, where
the N = 6 APs were deployed in a 30 × 30 m2 area at
known locations. The duration of the trajectory consisted in 18
seconds with a sample period ∆t of 100 ms. The first approach
in this work was estimating the distance to every AP at every
instant k. A single realization was performed and the Figure
3 shows θ1

k[1,0], illustrating the case when the mobile node
is close to the breakpoint distance. When this happens, the
model probabilities η(1),r

k and η(2),r
k exhibit nervous behaviors.

The estimated distance shown in Figure 3 corresponds to AP
number 5. The top plot presents the estimated distance and the
bottom plot shows the performance of the decision process
in Y1-Y2 switching. This indicates that a switch model has
occurred.

The IMM performance was evaluated with the RMSE val-
ues. Focusing in AP number 5 as an illustrative example, the
RMSE for the estimating of σ1 and σ2 is shown in Figure
4 where is observed the convergence of our algorithm after
short period of time where we observe the convergence of
the ML-based method after some instants. Figure 5 shows the
average RMSE of the distance estimation over all 6 APs and
position estimation. From this Figure, it is notable that the
IMM algorithm implemented under covariance estimation has
good accuracy in terms of mobile tracking.

Fig. 2. Real mobile trajectory versus estimated trajectory.

709



0 2 4 6 8 10 12 14 16 18
0

10

20

30

Time[s]

D
is
ta
n
ce

[m
]

 

 

0 2 4 6 8 10 12 14 16 18

0

0.2

0.4

0.6

0.8

1

Time[s]

η
(i
),
5

k

 

 

Estimated distance to AP 5
d

bp

Models transition

η
k
(1),5

η
k
(2),5

Fig. 3. Estimated distance according to probability performance η1k to AP 5
for one realization.

0 2 4 6 8 10 12 14 16 18
0

0.1

0.2

Time [s]

R
M

S
E

 σ
1

0 2 4 6 8 10 12 14 16 18
0

0.1

0.2

0.3

0.4

0.5

Time [s]

R
M

S
E

 σ
2

Fig. 4. RMSE of the estimation of σ1 and σ2 for AP 5.

VI. CONCLUSIONS

The mobile location via RSS measurements and the co-
variance calibration in a realistically wireless scenario has
been formulated as a switching non-linear state problem. This
work proposes an EKF-IMM algorithm to face the problem
when the RSS values measured by the mobile are switching
from a model to another. The proposed method determines
the probabilities of the two models improvising the distance
estimation between the mobile and the Anchor Point. Sim-
ulation results shows that the EKF-IMM algorithm gives a
good mobile tracking estimation together with a covariance
calibration of the channel. However, it is possible to estimate
the path-loss model parameteres and the dbp using the same
EKF-IMM algorithm. Using other smoothing algorithms are
recommended as future work as well as implementing the pro-
posed EKF-IMM algorithm under realistic WLAN scenarios.
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