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Explosive growth of generated data:
internet
communications (loT)
more computational capacity of electronics
biomedical advances
network tomography, ...
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Are they related?

How much?

(causality?)
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Shannon mutual information:

Kullback-Leibler divergence between densities independence
P:y(z Y) O
ry—//pzy(z y)In (2)py(y) dy 0
pz py y - dependence
..
value y

Claude Shannon (1916-2001)
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INDEX AND RATIONALE FOLLOWED

* Correlation between scalars
T~
v —

* Correlation between vectors via correlation between scalars

u
" proposal of 3 “natural” measures of correlation
v /

* Dependence between scalars via correlation between vectors

-
* mapping v \ Apply the 3 “natural” measures of correlation
y ———— v/
* Conditional dependence

= U Extension of the ideas

} mapping
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* Proposal of toy problems for team work
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+ Correlation between scalars

Squared Pearson coefficient (coherence)

_ Oxy _ Ozy
Tey = =
OzzOyy  OgzOy
—1<r, <1
= 0 +———— uncorrelation
Tiy > 0 +—— correlation

= 1 +«—— deterministic & affine dependence
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* Correlation between scalars

Two pairs of scalars

Individual measures

@ v ® B
@ @ Tm‘zyz

Global measure?

2 2
~. , — rm1y1 + Tf'32y2
! Is this intuition meaningful?
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Correlation between scalars

Correlation

0zy = E [zy] — E[z]E[y]

9 = O +——— uncorrelation

O'Z,y > () ~—— correlation
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* Correlation between scalars

Estimation

1 L
Oay = L1 ; (=) —2) (y() — 9)

data size

data centering

sample averages
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* Correlation between scalars

Gaussian case
1

n— -~
2
1=7%.4.,

Iznyn =1

Gaussian case (small correlation)

2

Imnyn ~ T:z:nyn

Local measure of information
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Correlation between scalars

Independent Gaussian pairs

Ixy_ZIx"yn Zlnl_l =In !

3 tn I, (1—r2,.)

1_ I_H (1 l'nyn))

/

H (1 znyn

Global coherence in the range O to 1
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Correlation between vectors via correlation between scalars

u(1) v(1)
u(2) v(2)

U(Nu) 'U(J.Vv)
Cuo = B (u— Elu]) (v - B[v) "]

/ correlation / correlation

Cuw 0 C
e 7& matrix ” “‘U”F > mlar
Frobenius
\ uncorrelation norm N uncorrelation

2
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Correlation between vectors via correlation between scalars

Decorrelate & normalize
u = C;1/2u

v = C;1/2v

Rotate
= 0Hy'

=0y
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Correlation between scalars

Independent Gaussian pairs (small correlation)

_ 2
Ly =) L.~ ) 1%,
n n
\ ... SO

adding coherences is locally
meaningful
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Correlation between vectors via correlation between scalars

Coherence matrix?

Decorrelate

\ 4

Normalize

\ g

Rotate

\ 4

Generate “scalar” coherences

Canonical Correlation Analysis (CCA)
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Correlation between vectors via correlation between scalars

Impose correlation “by pairs”

diagonal

Curor = OEC;Y/2C,,C; %0, =

SVD

r= c,;l/"’cwc;l/2 0,DO%

Coherence matrix . .
The singular values of the coherence matrix

are Pearson coefficients of pairs



Correlation between vectors via correlation between scalars

Measure from the coherence matrix:

min(Ny,Ny)

I~ = —Indet (I-TAT) ~ tr (P7T) = |T|I?
n=1 n
min(N,,N,) min(N, ,N,)
SRR S
n=1 n=1

kn = singular values of (C; 12¢,,C; 1/2)

A, = eigen values of (CH C;'C,,C;")
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Correlation between vectors via correlation between scalars

Estimation

L
Cuw = ﬁ > () - 1) (v(t) - 9| coron
=1 /

more compactly... )/(dmmm)

Gy = ——UPLYH | coren

L-1 \
U =[ul),u(2)....,u(L)] proy- 1 V= V) v(2),... v()]
Data matrix U Orthogonal projector Data matrix V.

(data centering)
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Dependence between scalars via correlation between vectors

.., Axioms for a measure of information

1] | 6oy = Oye
2 0zy = 0 iff z and y are independent

3| 0<é,, <1

4 05y = 1 if 2 and y are strictly dependent

5|| dzy =% (rzy) if z and y are jointly Gaussian

6 61411 = 51y

Granger u= f(z)

> Strictly monotonic functions
v =g(y)

31

Correlation between vectors via correlation between scalars

(Linear) maximal correlation problem:

u"’ =fHu

fxr? N =1
IMEX 727700 =
/ f.g 2
| NG
“ 'U" — gHv

= maximum eigenvector of the coherence matrix = Ay

f = first column of O,
g = first column of O,
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Correlation between vectors via correlation between scalars

In summary: three measures s
R 7:i::::;:;:;;;,:23crxy
@ ”Cuvuz R Oy 2
Intuitive and simple. E

= '
. ! !
2 —-1/2 —1/2 Left and right singular vectors bssouated
@ kmax (Cu Cuvcu )to kmax discover the best Iiné@r relations
|

Normalized in the range 0 to 1. Requires inverses. “ |
|

|
|

|

|
Iy

(3) min(Nu,N.) R —

2 —1/2 —1/2 —1/2 —-1/2 2
S k2 (Cr12CuLC; 1 ?) = (2 CunC; R
n=1
Aims at measuring information. Requires inverses.
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Dependence between scalars via correlation between vectors

Information-theoretic squared coherence

sz ((E, y)
P (2)py (y)

1. = Shannon mutual information
zy

Piy =1—e '

IT coherence

— 0 +———— independence

p:2ty > () =~ dependence

= ]_ +—— deterministic & functional dependence
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+ Dependence between scalars via correlation between vectors

Second-order

Statistical statistics Linear
signal z; ;
gnal designs
processing

Communications M) O
mutual

theory ) N
information
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+ Dependence between scalars via correlation between vectors

Should we estimate first densities and
then (Shannon) information?

Or perhaps estimate information
directly by averaging transformed data
samples?

Are we obligated to Shannon
information or perhaps we can accept
other information measures?
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+ Dependence between scalars via correlation between vectors

Cover’s theorem
(informal statement)

Non linearly separable sets can be
linearly separable by “intentionally”
increasing the dimensionality of the
problem.

L d

Thomas Cover (1938-2012)
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Dependence between scalars via correlation between vectors

Second-order statistics:

it is directly estimable from data

it captures only linear (affine) relations

34

Dependence between scalars via correlation between vectors

Raw data
Possible?
Raw data

Meaningful?

ES
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Dependence between scalars via correlation between vectors

“Smart” mapping

L] separating
- hyperplane

“high dimensional”
hyperplane

Original NON-LINEAR frontier
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+ Dependence between scalars via correlation between vectors * Dependence between scalars via correlation between vectors

Fact:
Second-order'statlstlcs a?re not able to Dy (:L‘, y) = Ds (m)py (y)
capture non-linear relations. Mathematical

Equivalent statements of

Conjecture (inspiration from Cover’s thm.) ndependence
Can we map data to vectors and then use

second-order statistics to capture non- Elf(z)g(y)] = E[f(z)] E[9(v)]

linear relations and statistical dependence Operational
manifested in the original data?
8 Vf,vg
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+ Dependence between scalars via correlation between vectors * Dependence between scalars via correlation between vectors

If fo&go 3 such that 72, >0
A —— f() > u
with ug = fo(.’I?) then
vo = go(Y)
Y () > v

® Searching for all functions!!!  Vf,Vg

z and y are statistically dependent

& Uncorrelation idea is reborn!l! E [uv] = E [u] E [v]
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+ Dependence between scalars via correlation between vectors * Dependence between scalars via correlation between vectors

Hirschfeld-Gebelein-Rényi (HGR) Characteristic function
maximal correlation coefficient

HGRmy — mé,XiziT?(m) z(wy) = E [ejwz 2] — /pz(x)ej“’m < 4

|——l

@ Searching for all functions!!! Vf’Vg Marginal CF Inv. Fourier transform of the PDFs
l—_\

-0 +———— independence (py(wy) = F [ery y] — /py(y)e]wy ydy

HGRzy # 0 +———— dependence

= ] +——— deterministic & functional dependence
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+ Dependence between scalars via correlation between vectors

Joint characteristic function

aylasi) = B [543

= //pmy(z,y)e“‘”’ =+ @ Y ddy

Note that:

Poy(We, —wy) = E [e““” Ty ”)] =E [ej“’: G y)*]
e

Correlation between two
complex random variables
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+ Dependence betwee alars via correlation between vectors

pmy(;’ y) = pw (w)poy (y)

Mathematical

Bl @)= B G B low)

_ - =Dperationa

_——”/-— \Vlf, Vg ® Se;r::l:irzgﬁmctions\!it

a7
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Good: &
Dependence is discovered by discovering

correlated “frequency” pairs.

But... @

No single frequency pair will “capture” the
total correlation discovered by the max.
correlation coefficient (HGR).
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* Dependence between scalars via correlation between vectors

Dazy (37’ y) = Dz (w)py (y)

Mathematical

E[f(z)g9(y)] = E[f(z)] E[g(y)]

Operational

Searching functions!!!
» Vg
46
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* Dependence between scalars via correlation between vectors
Pay(2,y) = P(2)py ()
Mathematical

Universal mapper

() = et

B |su, (@)s5, (4)] = B 50 (2) B* [s5.,, v)]

Operational and practical

\V'wm,wy E R 0 Searching reals!!!

a8
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* Dependence between scalars via correlation between vectors

su () [ v(1)

Sw;(-) EEEEE—— 'U(2)

51

Reminder of the three natural measures from

random vectors 2
e il
@ lCwl® < ouy |

Intuitive and simple.

) &=
Left and right singular vectors associated
2 -1/2 -1/2
@ kmax (Cu / Cuvcu / )to kmax discover the best lin df relations

Normalized in the range 0 to 1. Requires inverses. ‘\ l‘

(3) min(Nu,No) ———
i o) « [ e,

n=1
Aims at measuring information. Requires inverses.
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Dependence between scalars via

@D||Cus|

tr (VPLU#Up+vH)

correlation between vectors

1

r (6hu) = 7o

¢ _; Ly H 1
c“"_L—IUPv —

tr (PLUHUPLVEY)

-1
1 7

K. =U"U K,=Viv
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+ Dependence between scalars via correlation between vectors

LTER —noupy f() —»/,,ue(CN

Are vectors correlated?
How much?

Universal mappers

Apply the proposed three
measures of correlation 52
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Reminder of the three natural measures from
random vectors 2

Intuitive and simple.

I—%\
_ _ Left and right singular vectors associated
2 1/2 1/2
@ Fiax (Cu / C..C, / )to Fmax discover the bestlinﬁa

Normalized in the range 0 to 1. Requires inverses.

(3) min(Nu,N.) —
5 i o ecn) - e

n=1
Aims at measuring information. Requires inverses.
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+ Dependence between scalars via
correlation between vectors

56



Dependence between scalars via
correlation between vectors

L
K, I
Kernel
as’s':::;:l:ed —— [Kz]l 1,02
tox -
Iy 7
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Dependence between scalars via
correlation between vectors

k()

gaussian tophat epanechnikov
exponential linear cosine
2h h 0 h 2h  2h ch O h 2h  2h ch O h 2n
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Dependence between scalars via
correlation between vectors

I@ k2., (C;l/zcuuC.TIﬂ)I

We are solving a maximum correlation problem on the high dimensional
transformed data

v’ =fy
™ ]2 = 1

méxrzl/v//
2
gl =1

f.g
\‘U’=g v

Since u and v are “frequency components”, we are solving the HGR problem
under d h of the li

fandg.

The used dimension N...
imposes the allowed smoothness.

arises as a “band-pass filter” on the problem (regularization).

arises as a natural perfc / lexity trade-off.
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Dependence between scalars via
correlation between vectors

N/2 N-1
K], ., = Z eI vmel) gjana(lz) — Z eju\/%z(z(h)—z(’l))
1,62
n=-—N/2 n=0

7 Mathematician
work to make th

“Low-pass filter”

The “kernel trick” idea, known in
machine learning, reappears here!

el = [0 K)o =k (o02) - a(t)

The Hilbert-Schmidt Independence Criterion (HSIC) is re-encountered!!! 58
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Reminder of the three natural measures from
random vectors

@ lICuwl?

Intuitive and simple.

- - Left and right singular vectors associated
2 1/2 1/2
@ Ko (C21/2CuC 2

0 Kmax discover the best linear relations
Normalized in the range O to 1. Requires inverses.

(3) min(Nu,N.)

r—‘—
Z k2 (C;1/2CWUC;1/2) _ ||c;1/2cm)0;1/2||;

n=1
Aims at measuring information. Requires inverses.
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Reminder of the three natural measures from
random vectors

2
- Tay
2
@ lICull oy |°
Intuitive and simple. 0,0y
——

2 ~1/2 —~1/2 Left and right singular vectors associated

@ kmax (Cu CIWCU ) to Kkmax discover the best linear relations

Normalized in the range 0 to 1. Requires inverses.

min(N“,N.,)

>R (C;chc;lﬂ) -

n=1
Aims at measuring information. Requires inverses.
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Dependence between scalars via
correlation between vectors

Oz cwei ],

Measure of information between two phenomena based
on second order statistics only.

Is it Shannon mutual information?

No! (Thesis).
Instead, it measures the so-called Squared-Loss Mutual
Information
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Conditional dependence

e u
/, mapping Extension of the ideas

v N
z L—

pzy|z($a y) ; pm|z(x)py|z(y)

Cu,v|z Measure conditional dependence from the
conditional covariance matrix.
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Conditional dependence

Idea: U-STATISTICS

L

G = ﬁ > (ult) - ull) (v() - v(i)”

1<l <lp<L
—_—
data pairs!!! \/

data centering not
needed!

Wassily Hoeffding (1914-1991)
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Dependence between scalars via
correlation between vectors

@)|cz2cuwe; |

Shannon mutual information: independence
sz( ,y)
Pzy(Z,y) In dxdy 0
foy = / / o Po(2)py(y) R
Squared-Loss Mutual Information
independence
2
. / (Pay(@,9) = pe(@)py)* , , (&)
Ty — Y 5 0
pz(z)py(y) ‘*?‘dependence

lgy 2> Izy Upper-bounds Shannon MI

m oy =1 Measures Shannon M locally
I:y—0 2Izy
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Conditional dependence

Virtual sources:

lal=ll1—'-lz ‘.=,=V1—V2 2_21—22
V2 V2 V2
Main idea:
Cu,v|z £ Acu,v]z=z sz(Z) = Acﬁ,i|z=z dFZ(z) @
= /1122 Ciojz=0 AFy(21) dFy(22)
= C\",i|i=0 /2 dF,(21) dFy(z2)
R
=GCii=0 & B
66

Conditional dependence

Use incomplete U-statistics to compute
correlations

K
Cu = %Z (i (k) = ulz(k))) (a2 (k) — u(la(k))”
k=1

L(L-1)

2
Pairs of data selected according to small
values of |3|*, identified by sorting.

K<

Sorting distance pairs is one of the fundamental problems in
computer science.
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G iti d deling example

Co-information: I(x;y;2) = I(x;y) — I(x;y|z)

X = ,/yap +Vv x = ,/ybp+v
M*b:dy= /Aaq+w M™:{y=[cq+w
z=a z=b-c

a,b,c ~ U(0, \/5)
v,w ~ N(0,1)
p,q ~ Berny;p{-1,1}

Parameter y controls the total amount of absolute co-information.
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+ Conditional dependence
* Submitted to IEEE Signal Processing Letters:
Conditional Dependence via U-Statistics Pruning

Ferran de Cabrera ©, Marc Vila-Insa ©, Graduate Student Member, IEEE, and Jaume Riba ©, Senior Member, IEEE

Available at: hitps://arxivorg
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* Proposal of toy problems for team work
* Generation task for each team:
— Invention of a model to generate dependent data.
— Generate K pairs of data (L samples each), all with identical marginal
statistics:
* 50% are independent pairs

* 50% are dependent pairs

— Calibrate the difficulty of the model with an oracle estimator.
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Model M™ Model M~

0.05 0.05

0.04

0.03

\
]
v

0.02 0.02

Dependence me
Dependence measure

0.01 0.01

~ (dB)

Proposal of toy problems for team work
* Proposed parameters:
— Number of pairs: K= 100
— Number of samples per pair: L= 100

I,
— Oracle quality: % =10

Iy oracle

* Form T teams of two persons each.

Proposal of toy problems for team work

* Analysis task for each team:

— Chose another team to interchange the generated data pairs, without
telling which pairs are dependent.

— Develop some measure of statistical dependence from the explained
ideas.

— Apply the developed measure to the available data.
— Classify the pairs in independent and dependent.

— Provide your results to the team that generated the data.
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Proposal of toy problems for team work

» Evaluation of the analysis task for each team:

— Evaluate the task of the team that has provided results based on your

data, by telling the percentage of error in the classification.

— Make all the analysis scores public to all.

» Evaluation of the modelling task for each team:

— The worst is the score that you give to the other team, the best is the
score that you receiver on modelling.

— But other team can now evaluate your data to check your model and
make you to decrease your score on modelling.

Proposal of toy problems for team work

Example: Gaussian Mixture Models (GMM)
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Dependent data sequences are obtained from X and Y samples at same time.

Independent data sequences are obtained from X and Y samples at different time.
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Proposal of toy problems for team work

Pay(Z,Y)

Iy =FEn
Y P2 (2)py (y)

An oracle (pdfs known) estimator (benchmark) is
based on the sample average from the data
obtained from dependent pairs:

L
i o= l Z zy (z1,91)
xy,oracle —
L =1 -'L'l py (yl)
Contributions
— Increase the data dimensionality and find linear dependences there
instead of

find non-linear dependences directly.

— Linear-phase complex vectors “steerings” emerge as universal maps to
increase dimensionality in a “regularized manner”.

— Classical second-order analysis schemes are reborn as natural tools for
measuring information in data.

— Kernel methods appear when the dimension tends to infinity.

— Measures of information (different from Shannon) emerge as natural
surrogates for handling data.

— Doctoral thesis: F. De Cabrera: “Data-driven information-theoretic
tools under a second-order statistic perspective”.

— Interest in cross-disciplinary links and fresh perspectives.

Mathematicians, please feel free to contact us

(Jaume.riba@upc.edu) for exploring potentlal links!!!

“all things are delicately interconnected”, J. Holzer



