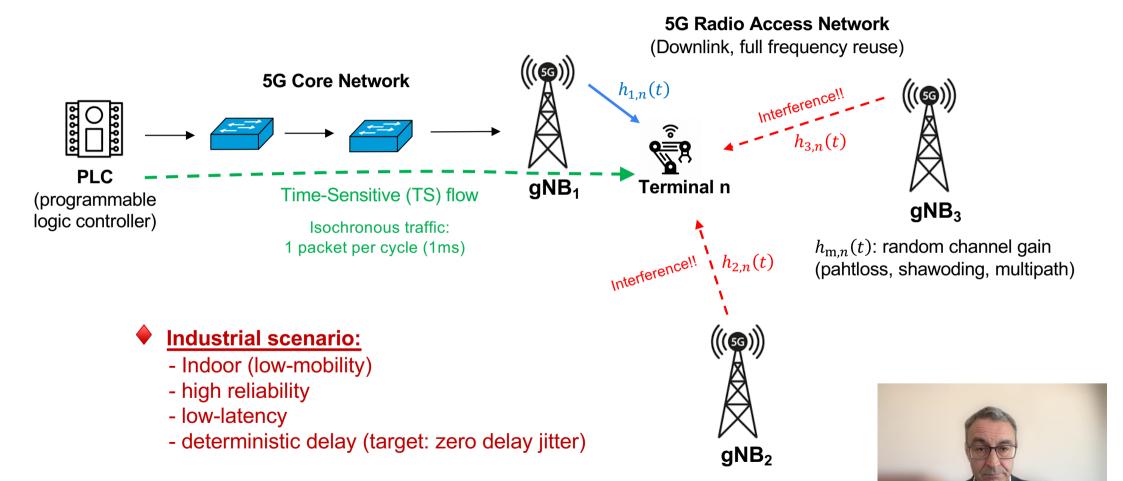


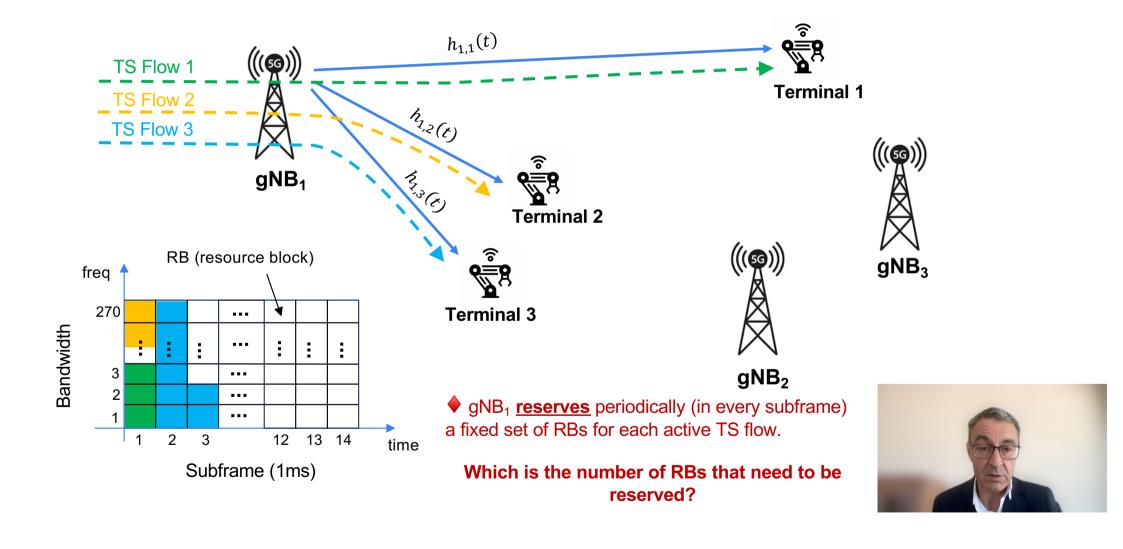
"Multi-Base Station Coordination for Semi-Persistent Scheduling in Industrial 5G Wireless Time-Sensitive Networks"

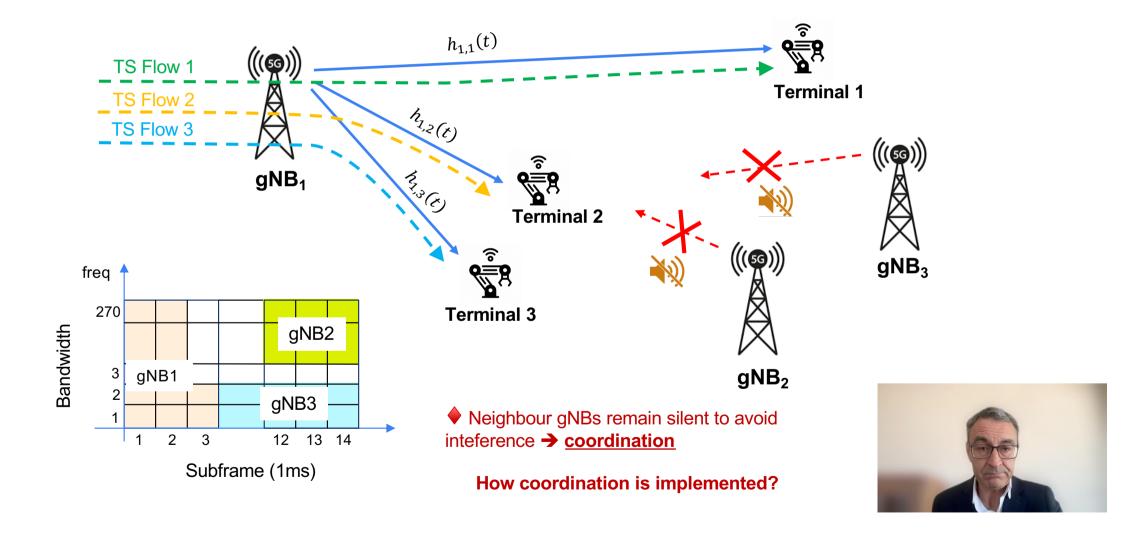
Javier Villares, Youssef El Kaisi and Olga Muñoz Universitat Politècnica de Catalunya (UPC), Barcelona, Spain

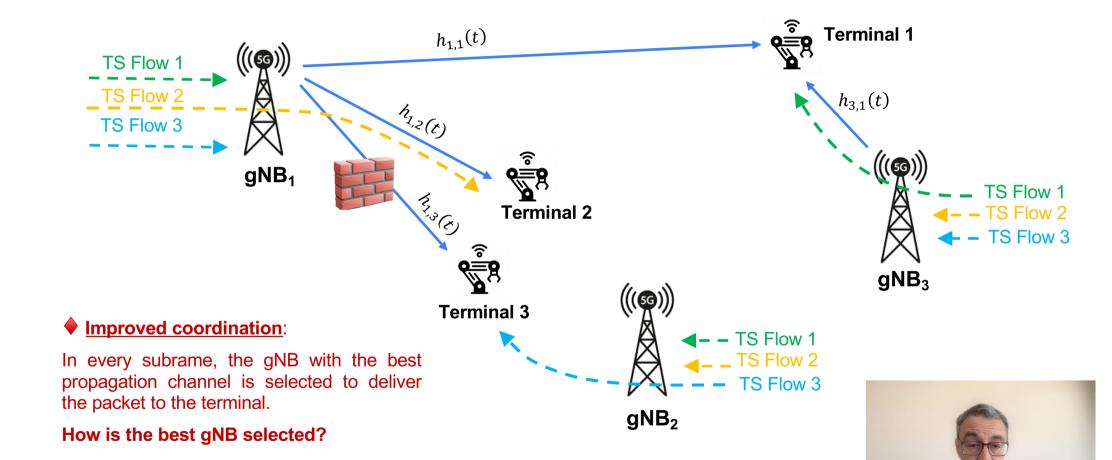
12th International Symposium on Networks, Computers and Communications (ISNCC). October 27-29, 2025 (Paris, France)

Project **MAYTE** (PID2022-136512OB-C21) and **6-SENSES** (PID2022-138648OB-I00) funded by:









5G Radio Access Network (Downlink, full frequency reuse) **5G Core Network** $h_{1,n}(t)$ **PLC** TS flow gNB₁ Terminal n (programmable gNB_3 logic controller) $h_{m,n}(t)$: random channel gain Interference!! (pahtloss, shawoding, multipath) ◆ TSN controller - Resources reservation to avoid gNB_2 packet delays in queues (802.1Qbv) - Nodes synchronization (802.1as)

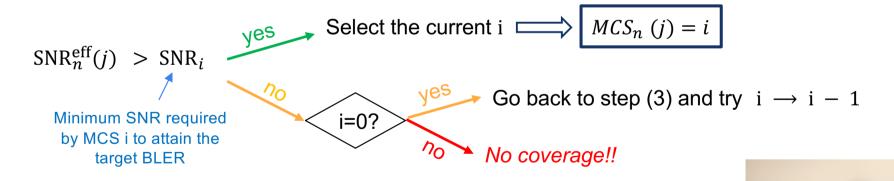
(multiples of coherence time)

- Channel estimation: $\hat{H}_{m,n}(k,j) = \sum_i \hat{h}_{m,n}(iT_s,jT_{coh})e^{-j2\pi\frac{k}{N_{FFT}}i}$ Subcarrier index Time index
- $oxed{2}$ SNR calculation: $ext{SNR}_{m,n}(k,j) = rac{E_s}{N_0} |\hat{H}_{m,n}(k,j)|^2$
- (3) Effective SNR calculation for MCS $i = i_{max}$:

$$SNR_{m,n}^{eff}(j) = f_i^{-1} \left(\frac{1}{|\mathcal{K}|} \sum_{k \in \mathcal{K}} f_i \left(SNR_{m,n}(k,j) \right) \right)$$

RBIR (Received Bit Mutual Information Rate) for the modulation of the ith MCS

Evaluated numerically!!


Table 5.1.3.1-3: MCS index table 3 for PDSCH				
MCS Index	Modulation Order Q _m	Target code Rate R x [1024]	Spectral efficiency	
0	2	30	0.0586	
1	2	40	0.0781	
2	2	50	0.0977	
3	2	64	0.1250	
4	2	78	0.1523	
5	2	99	0.1934	
6	2	120	0.2344	
7	2	157	0.3066	
8	2	193	0.3770	
9	2	251	0.4902	
10	2	308	0.6016	
11	2	379	0.7402	
12	2	449	0.8770	
13	2	526	1.0273	
14	2	602	1,1758	
15	4	340	1.3281	
16	4	378	1,4766	
17	4	434	1.6953	
18	4	490	1.9141	
19	4	553	2.1602	
20	4	616	2.4063	
21	6	438	2.5664	
22	6	466	2.7305	
23	6	517	3.0293	
24	6	567	3.3223	
25	6	616	3.6094	
26	6	666	3.9023	
27	6	719	4.2129	
28	6	772	4.5234	
29	2	reserved		
30	4	reserved		
24	6	reconved		

gNB selection: gNB that maximizes the effective SNR of terminal n at time j

$$\operatorname{SNR}_n^{\operatorname{eff}}(j) = \max_m \operatorname{SNR}_{m,n}^{\operatorname{eff}}(j)$$
 \Longrightarrow $m_n(j) = \arg\max_m \operatorname{SNR}_{m,n}^{\operatorname{eff}}(j)$

Modulation and Coding Schem (MCS) selection:

- Compute offline the selected MCS during J channel $MCS_n = [MCS_n(1), ..., MCS_n(J)]$ realizations of the channel:
- 7 Compute the histogram of $extbf{MCS}_n$: $p_i = rac{1}{J} \sum_{i} \mathbb{I}_{ extbf{MCS}_n(j)=i}$

Prob of requiring more than the reserved RBs

8 Determine the number of RBs reserved for the nth flow:

$$N_{RB}^*(n) = \lceil T_{BS}/(12R_{i^*})
ceil$$
 with i^* the solution to
Transport Rate (bpcu) of MCS i^*

$$\sum_{i=0}^{i^*-1} p_i \le p_{loss}$$

9 Determine the total number of RBs reserved for TS traffic:

$$N_{RB} = \sum_{n=1}^{N} N_{RB}^*(n)$$

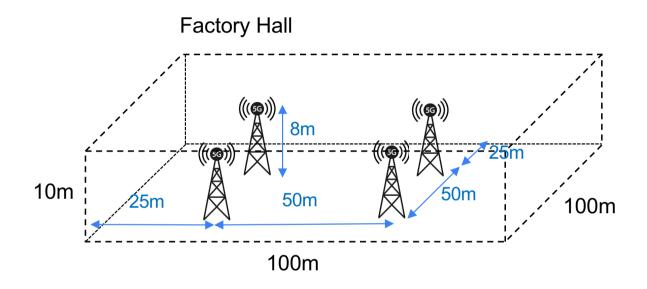
- Compute offline the selected MCS during J channel $MCS_n = [MCS_n(1), ..., MCS_n(J)]$ realizations of the channel:
- 7 Compute the histogram of $extbf{MCS}_n$: $p_i = rac{1}{J} \sum_{i} \mathbb{I}_{ extbf{MCS}_n(j)=i}$

Prob of requiring more than the reserved RBs

8 Determine the number of RBs reserved for the nth flow:

$$N_{RB}^*(n) = \lceil T_{BS}/(12R_{i^*})
ceil$$
 with i^* the solution to
Transport Rate (bpcu) of MCS i^*

$$\sum_{i=0}^{i^*-1} p_i \le p_{loss}$$


9 Determine the total number of RBs reserved for TS traffic:

$$N_{RB} = \sum_{n=1}^N N_{RB}^*(n)$$

Simulated scenario

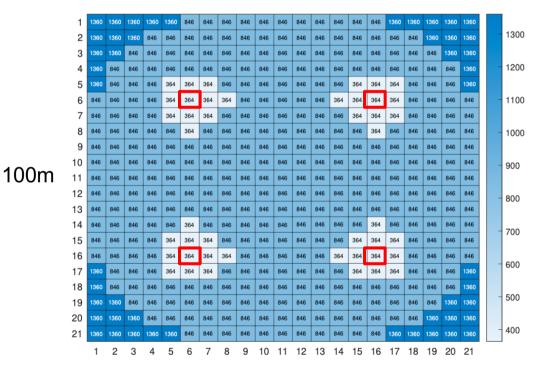
Indoor factory channel model (Inf-SH) [3GPP TR 38.901]

PROPAGATION CHANNEL PARAMETERS

Parameter	Value
Frequency (f)	3.5 GHz
Multipath model	TDL-B (Rayleigh taps)
Delay spread	57 ns
Shadowing (std)	5.9 dB (log-normal)
Pathloss model	$32.4 + 23\log_{10}(d) + 20\log_{10}(f)$
User terminal height	1.5 m

5G NR CONFIGURATION

Parameter	Value
Transmitted E_s/N_0 (dB)	87.7 - 130.9 dB
Bandwidth	50 MHz
Subframe duration	1 ms
Subcarrier spacing (Δf)	15 kHz ($\mu = 0$)
Symbol duration including $CP(T)$	71.4 μs
Transport block size (TBS)	3780 bits
Block Error Rate (BLER)	$5 \cdot 10^{-4}$
Number of RBs (NRB) per symbol (K)	270
Number of RBs (NRB) per subframe ($N_{RB,max}$)	3600
Number of RBs (NRB) for signaling (S_{RB})	180 (approx. 5%)

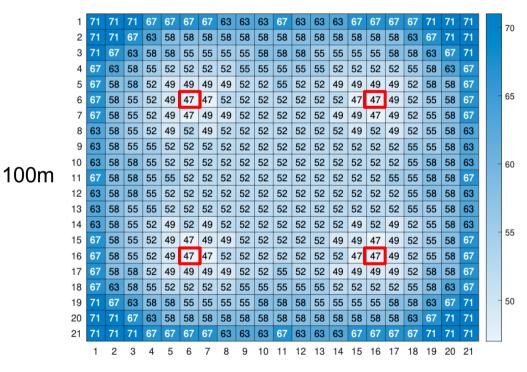

5G configuration [3GPP TS 38.214, TS 38.212]

Simulation results

 $N^*_{RB}(n)$: Number of reserved RBs depending on the position of terninal n

Mimimum transmitted power to guarantee coverage over all the map

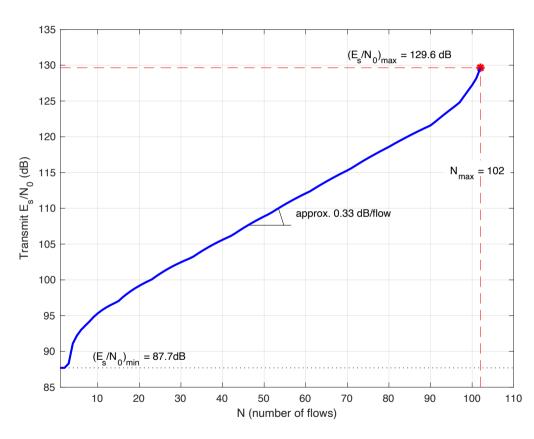
100m


gNBs position

Simulation results

 $N^*_{RB}(n)$: Number of reserved RBs depending on the position of terninal n

Increased transmitted power to increase throughput and reduce number of RBs


100m

gNBs position

Simulation results

N randomly deployed terminal (1 flow per terminal)

Main conclusions

- Window reservation mechanism for 5G compatible with IEEE 802.1Qbv
- Coordination is essential to cope with interference and exploit macrodiversity in industrial multi-gNB scenarios.
- Transmitted power can be used to increase the number of time-sensitive flows handled by the 5G radio access network.

