

# OFDM SIDELOBE SUPPRESSION: CSIT-AWARE ORTHOGONAL PRECODING

Vahid Vahipour<sup>1</sup>, Roberto López-Valcarce<sup>1</sup>, and Josep Sala<sup>2</sup>

<sup>1</sup>atlanTTic Research Center, Universidade de Vigo; <sup>2</sup>Universitat Politècnica de Catalunya

## MOTIVATION

- **What the Bottleneck is:**
  - Rectangular pulse CP-OFDM has slow sidelobe decay ( $\propto f^{-2}$ )  $\Rightarrow$  high OBR/ACI.
  - Practical designs must deliver *simultaneously*:
    - (i) sharp OBR suppression in a prescribed band  $\mathcal{B}$ ,
    - (ii) strong SER on frequency-selective channels,
    - (iii) low-complexity decoding.
  - Most spectral precoding schemes are CSIT-blind, PSP-OFDM being an exception [1].
- **What we propose:**
  - BSPM-based semi-unitary spectral precoding  $\Rightarrow$  OBR mitigation in  $\mathcal{B}$ .
  - CSIT-driven right-unitary rotation  $\Rightarrow$  improved receiver reliability with unchanged PSD/OBR.
  - Receiver-friendly effective channel  $\Rightarrow$  SVD/GMD-based rotations to enable ZF/SIC decoding.

## 1. SIGNAL & CHANNEL MODEL

- **MC setup:**  $N$ -IFFT system with  $K \leq N$  active subcarriers; guard interval  $l_g$ .
- **Spectral precoding:**
  - At blk.  $m$ , map  $D \leq K$  syms.  $\mathbf{d}_m \in \mathbb{A}^D$  to active tones
$$\mathbf{x}_m = \mathbf{G}\mathbf{d}_m \in \mathbb{C}^K$$
- $\mathbf{G} \in \mathbb{C}^{K \times D}$ : Redun.  $R = K - D$  & rate  $\lambda = D/K \leq 1$ .
- **Closed-form PSD:**
  - Under  $E[\mathbf{d}_m \mathbf{d}_{m-\ell}^H] = \delta[\ell] \mathbf{I}_D$ , the PSD expression [2]:
$$P_s(f) \propto \phi^H(f) \mathbf{G} \mathbf{G}^H \phi(f).$$
- $\phi^H(f)$ : stacked per-subcarrier spectral shapes.

### • Block-fading channel:

- Exponential PDP multipath:
$$h_c[n] = e^{-\frac{n}{2\delta l_g}} \tilde{h}_c[n], 0 \leq n \leq l_g - 1, \tilde{h}_c[n] \sim \mathcal{CN}(0, 1)$$

### – The post-FFT channel:

$$\mathbf{H} = \text{diag}\{H_c[k_1], \dots, H_c[k_K]\} \in \mathbb{C}^{K \times K}$$

$$H_c[k]: N\text{-DFT of } \{h_c[n]\} \Rightarrow \sum_{k \in \mathcal{K}} |H_c[k]|^2 = K.$$

## 2. PROBLEM STATEMENT & PROPOSED DESIGN

- **Objective:**
    - Define weighted out-of-band power in  $\mathcal{B}$ :
$$P_W \triangleq \int_{-\infty}^{+\infty} W(f) P_s(f) df = \text{Tr}\left(\mathbf{G}^H \Phi \mathbf{G}\right), \quad W(f) \geq 0$$
  - $\Phi$  aggregates the DAC filter and subcarrier responses, & depends on the weighting profile  $W(f)$ .
  - To avoid the trivial solution  $\mathbf{G} = \mathbf{0}$ , enforce semi-unitary constraint:
- $$\min_{\mathbf{G}} \text{Tr}\left(\mathbf{G}^H \Phi \mathbf{G}\right) \text{ s.t. } \mathbf{G}^H \mathbf{G} = \mathbf{I}_D.$$

### • Solution:

- $\mathbf{G}_*$  spans the eigenspace of the  $D$  smallest eigenvalues of  $\Phi$ ,
- $\mathbf{G}_*$  &  $\mathbf{G}_* \mathbf{V}^H$  are spectrally equivalent  $\Rightarrow$  same PSD/OBR.

### • Received signal:

- The received vector (after CP removal and FFT) is
$$\mathbf{r} = \mathbf{H}\mathbf{x} + \mathbf{n} = \mathbf{H}\mathbf{G}\mathbf{d} + \mathbf{n}, \quad E[\mathbf{n}\mathbf{n}^H] = \sigma^2 \mathbf{I}_K$$
- CSI available at TX (CSIT)
- Idea: keep  $\mathbf{G}_*$  for spectrum, choose  $\mathbf{V}$  (via CSIT) to simplify decoding/improve SER.

## 3. SYSTEM CONFIGURATION

### • Simulation setup:

- **CP-OFDM:** rectangular pulse;  $N = 256$ ,  $l_g = N/8 = 32$ ,  $\Delta_f = \frac{1}{NT_s}$ ,  $K = 129$  subcarriers, symmetric around carrier, 16-QAM modulation.
- **OBR band:**  $\mathcal{B} = \{f : \frac{1}{4T_s} + \frac{\Delta_f}{2} \leq |f| \leq \frac{1}{2T_s}\}$ , with  $W(f) = \mathbb{1}_{f \in \mathcal{B}}$ .
- **Channel (block-fading):**  $\delta l_g$  = RMS delay spread (samples),  $\delta = \{0.01, 0.1\}$

### • ZF receiver without CSIT (baseline)

- Tx precoder:  $\mathbf{G} = \mathbf{G}_*$
  - RX front-end:
- $$\mathbf{G}_*^H \mathbf{H}^{-1} \mathbf{r} = \mathbf{d} + \mathbf{w} \Rightarrow \hat{\mathbf{d}} = \text{DEC}_{\mathbb{A}}\{\mathbf{G}_*^H \mathbf{H}^{-1} \mathbf{r}\}$$

– Strong noise enhancement on deep fades due to  $\mathbf{H}^{-1}$ .

### • ZF receiver with CSIT (SVD-based)

- Effective channel decomposition:
$$\mathbf{H}\mathbf{G}_* = \mathbf{U}_c \Gamma_c \mathbf{V}_c^H, \quad \Gamma_c = \text{diag}\{\gamma_1, \dots, \gamma_D\}$$

### – TX precoder:

$$\mathbf{G} = \mathbf{G}_* \mathbf{V}_c \Rightarrow \mathbf{r} = \mathbf{U}_c \Gamma_c \mathbf{d} + \mathbf{n}$$

### – RX front-end:

$$\Gamma_c^{-1} \mathbf{U}_c^H \mathbf{r} = \mathbf{d} + \mathbf{w}_c \Rightarrow \hat{\mathbf{d}} = \text{DEC}_{\mathbb{A}}\{\Gamma_c^{-1} \mathbf{U}_c^H \mathbf{r}\}$$

– Noise enhancement depends on the  $\gamma_i$ .

### • SIC receiver with CSIT (GMD-based)

- Effective channel decomposition
$$\mathbf{H}\mathbf{G}_* = \gamma \mathbf{Q}_c \mathbf{R}_c \mathbf{P}_c^H, \quad \gamma = \sqrt[3]{\gamma_1 \gamma_2 \dots \gamma_D}$$

### – TX precoder:

$$\mathbf{G} = \mathbf{G}_* \mathbf{P}_c \Rightarrow \mathbf{r} = \gamma \mathbf{Q}_c \mathbf{R}_c \mathbf{d} + \mathbf{n}$$

### – RX front-end:

$$\gamma^{-1} \mathbf{Q}_c^H \mathbf{r} = \mathbf{R}_c \mathbf{d} + \tilde{\mathbf{w}}_c \Rightarrow \text{SIC decision rule!}$$

– White post-noise with variance  $\sigma^2/\gamma^2$ , with possible error propagation at low SNR.

## 4. PERFORMANCE EVALUATION

### • Sidelobe suppression:

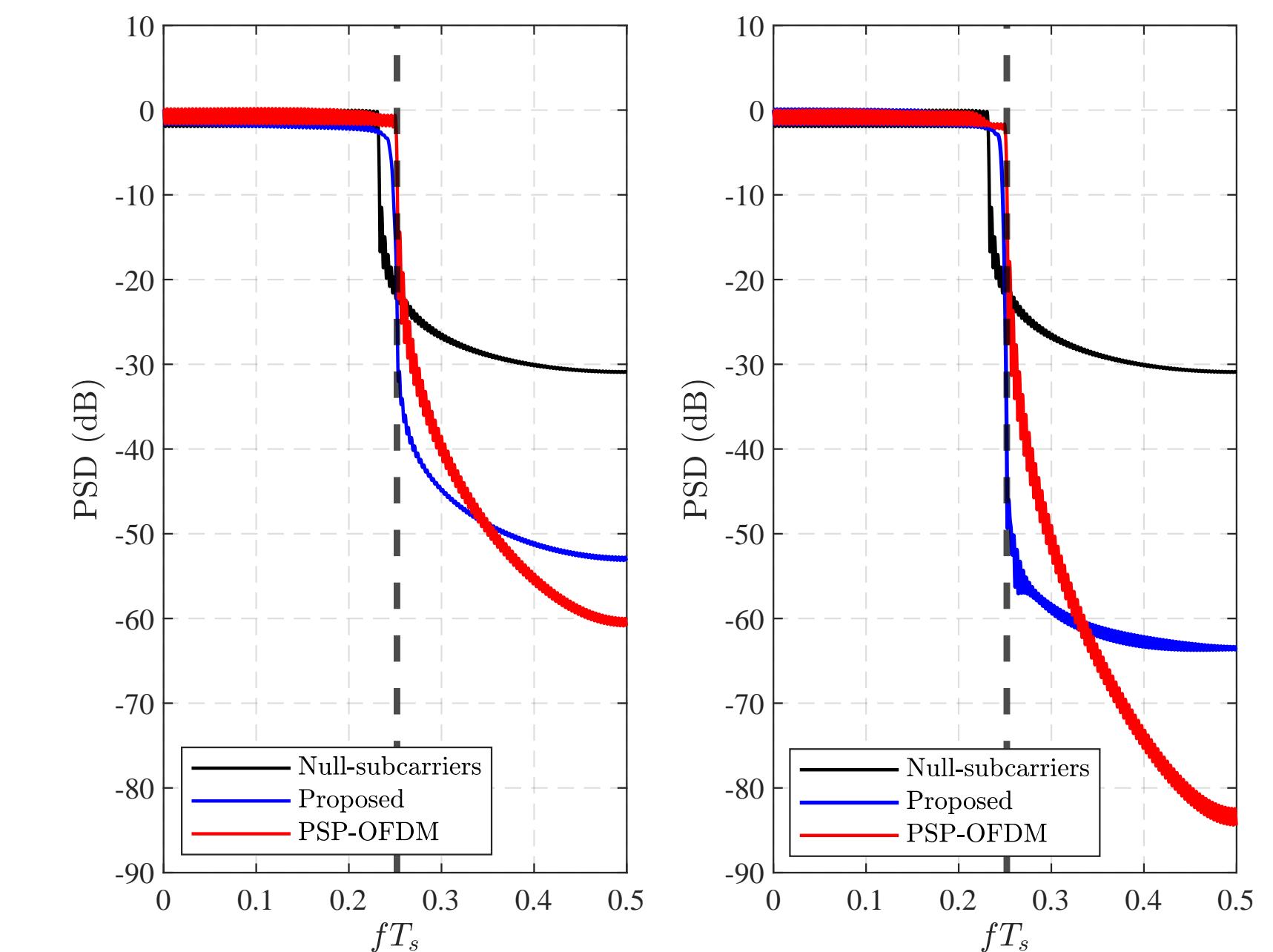



Fig. 2: PSDs of proposed and PSP-OFDM precoders ( $\delta = 0.10$ ); with  $R = 6$  (left), and  $R = 10$  (right).

### • Error rate:

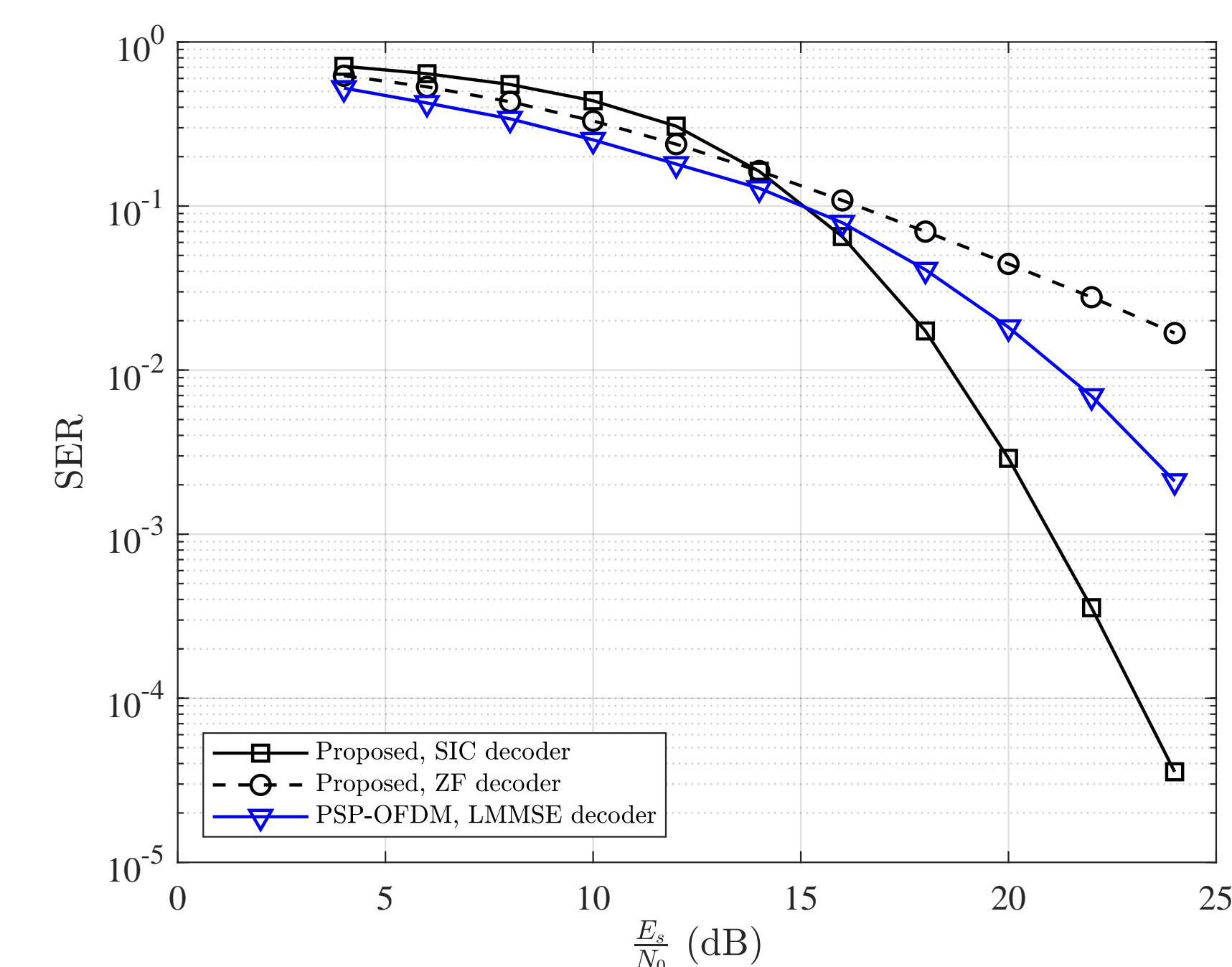



Fig. 3: SER performance of proposed and PSP-OFDM precoders (ZF and SIC), with  $\delta = 0.10$  and  $R = 6$ .

## REFERENCES & ACKNOWLEDGMENT

- W.-C. Chen, C.-D. Chung, and P.-H. Wang, "Pre-equalized and spectrally precoded OFDM," vol. 71, no. 7, pp. 7472–7486, 2022.
- R. López-Valcarce, "General form of the power spectral density of multicarrier signals," vol. 26, no. 8, pp. 1755–1759, 2022.

Work funded by MICIU/AEI/10.13039/501100011033 and by ERDF/EU ("A way of making Europe") under project MAYTE (PID2022-136512OB-C21 and PID2022-136512OB-C22).

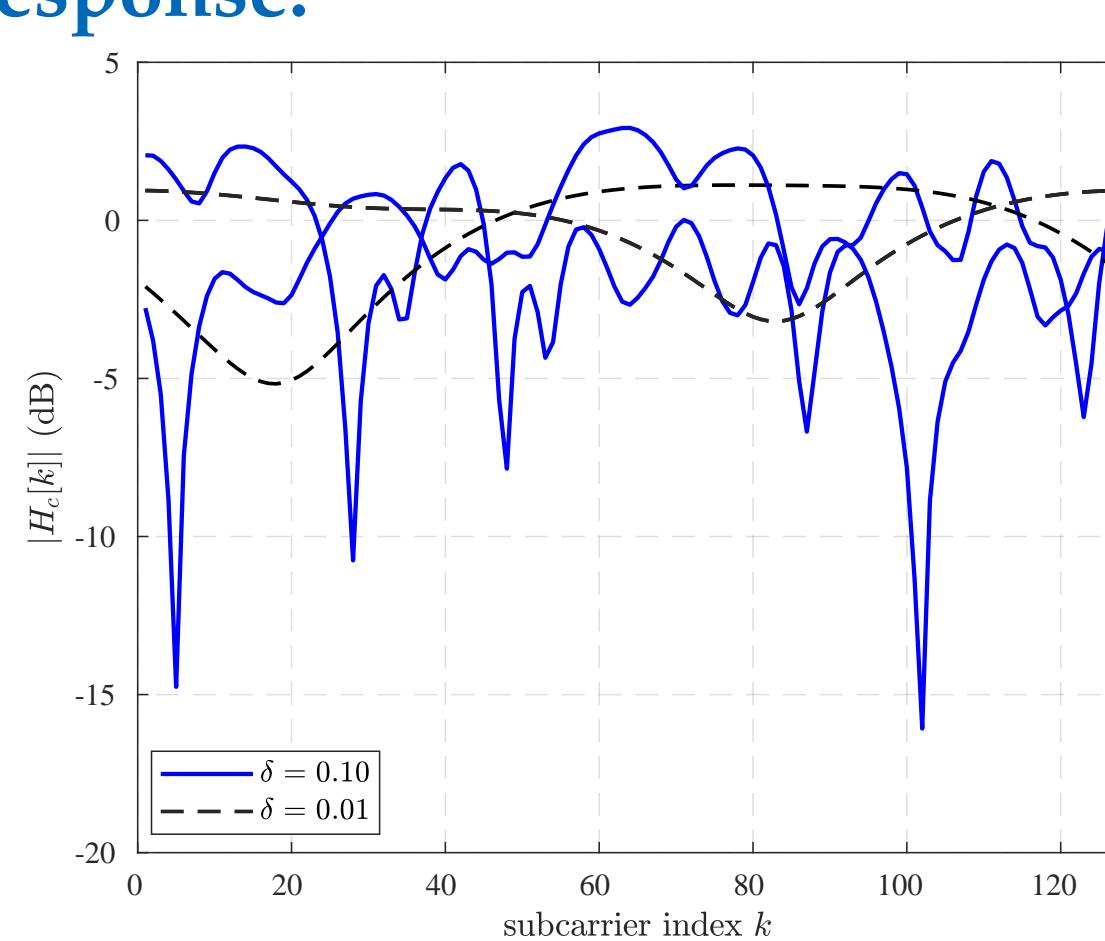



Fig. 1: Channel response  $|H_c[k]|$  vs. subcarrier index