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Motivation

Estimation of information measures in information-
theoretical learning problems is a fundamental, yet
very complex task [1]. Moreover, estimation meth-
ods usually require some kind of self-regularization
process that can potentially hinder the accuracy.
By assuming that this regularization is mandatory
for some estimators, this work tries to answer the
question of whether we can utilize the regulariza-
tion for the benefit of estimating information. In
short, we prove three relevant lemmas of the es-
timation of the second-order Tsallis entropy that
revolve around the regularization process. Finally,
we propose an information measure that leverages
the previous properties.

Baseline estimation

Let X be a continuous random variable with density
𝑓X supported in 𝒟. The Tsallis entropy of order
𝑞 ≥ 0 is defined as follows:

𝑆𝑞(X) =
1

𝑞 − 1
(1 −∫

𝒟
𝑓𝑞

X(𝑥)d𝑥), 𝑞 ≠ 1. (1)

A special case is given for 𝑞 = 2:

𝑆2(X) = 1 −∫
𝒟
𝑓2

X(𝑥)d𝑥. (2)

The previous entropy measure results in a very in-
teresting expression for the purpose of estimation
[2], [3]. Given i.i.d. samples 𝒳 = {𝑥1, 𝑥2,… , 𝑥𝐿}
drawn from X, if a Gaussian kernel with bandwidth√
𝑣 is used to estimate 𝑓X, the estimator becomes:

𝑆2(X) = 1 − 2
𝐿(𝐿 − 1)

1T
𝐿(K ⊙ U)1𝐿,

[K]𝑖𝑗 =
1√
4𝜋𝑣

exp(
−(𝑥𝑖 − 𝑥𝑗)2

4𝑣
).

(3)

Lemma 1. Let N ∼ 𝒩(0, 1), 𝑣 > 0. The
estimator in (3) is an unbiased estimator of
𝑆2(X +

√
𝑣N):
E(𝑆2(X)) = 𝑆2(X +

√
𝑣N). (4)

Monotonicity I

Following the monotonicity of Shannon’s entropy
under i.i.d. random variables addition, we prove
that Tsallis entropy is also weakly monotonic:

Lemma 2. Let 𝑞 ∈ [0,∞)∖{1}. Let X, Y be two
independent continuous random variables. Let
𝑆𝑞(X), 𝑆𝑞(Y) be the order-𝑞 Tsallis entropies of
X and Y, respectively. Then,

𝑆𝑞(X) ≤ 𝑆𝑞(X + Y). (5)

Monotonicity II

For the particular case where one of the random
variables in Lemma 2 is normally distributed, we can
determine a de Bruijn-like identity for the second-
order Tsallis entropy:

𝜕
𝜕𝑣

𝑆2(X +
√
𝑣N) = −E( 𝜕2

𝜕Y2𝑓Y(Y)), (6)

where Y = X +
√
𝑣N. Thanks to the unbiased-

ness in Lemma 1, (6) also applies to the estimator
in (3). However, the lack of logarithm (compared
to Shannon’s entropy) makes difficult to to develop
the right-side of (6). Instead, we present a novel
bound:

Lemma 3. Let N ∼ 𝒩(0, 1), X a random vari-
able with density 𝑓X and 𝑣 > 0. Then,

𝜕
𝜕𝑣

𝑆2(X +
√
𝑣N) ≤ 𝜕

𝜕𝑣
𝑆2(

√
𝑣N). (7)

Concavity

Finally, we also prove that the second-order Tsallis
entropy is concave with respect to the noise power:

Lemma 4. Let N ∼ 𝒩(0, 1), X a random
variable with density 𝑓X and 𝑣 > 0. Then,
𝑆2(X +

√
𝑣N) is concave in 𝑣.

A novel information measure

Consider N ∼ 𝒩(0, 1), X a continuous random vari-
able, and 𝑣 > 0. Using Lemmas 2, 3 and 4, for any
𝑘 > 1 there exists a unique 𝑣0 such that

𝜕
𝜕𝑣

𝑆2(X +
√
𝑣N)|𝑣=𝑣0 = 1

𝑘
𝜕
𝜕𝑣

𝑆2(
√
𝑣N)|𝑣=𝑣0 . (8)

The relevance of the previous expression is the link
between 𝑣 and 𝑘. As the contamination becomes
stronger, 𝑣 increases and 𝑘 becomes closer to one.
This rationale is depicted in the following figure:
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However, to produce an estimate we need to start
from an estimator. Thus we join the the estimate
𝑆2(X) with (8), and thanks to Lemma 1 and the
linearity of differentiation and expectation we ob-
tain the following expressions:

E( 𝜕
𝜕𝑣

𝑆2(X)) = 𝜕
𝜕𝑣

𝑆2(X +
√
𝑣N). (9)

Given 𝜕
𝜕𝑣𝑆2(

√
𝑣N) = (4

√
𝜋𝑣3/2)−1 and letting X ∼

𝒩(0, 𝛽) results in
1

4
√
𝜋(𝛽 + 𝑣0)

3/2 = 1
𝑘

1
4
√
𝜋𝑣3/20

, (10)

which after some manipulations we can obtain the
desired information measure:

V(X) = 𝑣0 ⋅ (𝑘2/3 − 1) = 𝛽 (11)

GMM Cluster Variance

An application of (11) is to provide an upper bound
of the cluster variance of a Gaussian Mixture Model
(GMM) with the following density:

𝑓X(𝑥) =
𝑀−1
∑
𝑘=0

𝑝Y(𝑦𝑘)√
2𝜋𝛽

exp(−(𝑥 −
√
𝛼𝑦𝑘)2

2𝛽
). (12)

Then, the following lemma arises:

Lemma 5. Let X =
√
𝛼Y +

√
𝛽N′ be a random

variable with density 𝑓X given by (12). Then,
𝛽 ≤ V(X). (13)

References

[1] J. Príncipe, Information Theoretic Learning: Renyi’s En-
tropy and Kernel Perspectives (Information Science and
Statistics). New York, NY: Springer New York, 2010, ISBN:
978-1-4419-1569-6.

[2] J. Aubuchon and T. Hettmansperger, “A note on the es-
timation of the integral of 𝑓2(𝑥),” Journal of Statistical
Planning and Inference, vol. 9, no. 3, 1984.

[3] H. Joe, “Estimation of entropy and other functionals of a
multivariate density,” Annals of the Institute of Statistical
Mathematics, vol. 41, no. 4, 1989.

Acknowledgements

This work was funded by project MAYTE (PID2022-
136512OB-C21) by MCIU/AEI/10.13039/501100011033
and ERDF “A way of making Europe”, grant 2021
SGR 01033 and grant 2019 FI 00620 by Generalitat de
Catalunya, grant 2023 FI “Joan Oró” 00050 by Generali-
tat de Catalunya and the ESF+, and grant 2022 FPI-UPC
028 by UPC and Banc de Santander.

Contact Information

•Email: aniol.marti@upc.edu
•UPC Campus Nord, C/ Jordi Girona 1-3,

08034 Barcelona


