# A CYCLOSTATIONARY PERSPECTIVE ON NONCOHERENT SIMO COMMUNICATIONS



Marc Vilà-Insa<sup>1</sup>, and Jaume Riba<sup>2</sup>

Signal Processing and Communications Group (SPCOM) Universitat Politècnica de Catalunya (UPC)



UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

Departament de Teoria del Senyal Comunicacions

# HIGHLIGHTS

- Objective: To characterize statistical properties of the received signal in a noncoherent massive SIMO setting.
- **Approach:** 
  - Vectorizing the time-space signal reveals a cyclostationary (CS) process.
  - Its asymptotic structure can be effectively exploited in the Karhunen-Loève (KL) domain.
- Outcome: This spectral representation provides insights on noncoherent detection with large arrays and unveils the fundamental parameters that play a role in it, while pointing at simplified implementations.

# BACKGROUND

It is agreed among the scientific community that future wireless communications will be built upon massive MIMO technologies.

## SPECTRAL ANALYSIS OF THE RECEIVED SIGNAL

A CS process  $y_i(n)$  of period K can be expanded onto its KL basis  $\{\phi_i^{(k)}(n,\sigma)\}$  as:

$$\mathbf{y}_{i}(n) \triangleq \sum_{k=0}^{K-1} \int_{0}^{\frac{1}{K}} \phi_{i}^{(k)}(n,\sigma) \mathrm{d}\mathbf{y}_{i}^{(k)}(\sigma),$$
(2)

where  $dy_i^{(k)}(\sigma)$  are uncorrelated increments in the KL spectral domain.

In [1], [2] the asymptotic KL basis of  $y_i(n)$  was derived in terms of its cyclic spectrum matrix (CSM),  $\mathbf{S}_i(\sigma) \in \mathbb{C}^{K \times K}$ . It can be constructed from its spectral correlation in the Cramér-Loève (CL) domain, as shown in Figure 3.



Figure 3. Graphical representation of the construction of  $[\mathbf{S}_i(\sigma)]_{r,c}$  from the spectral correlation of  $y_i(n)$  at frequencies  $(\sigma + \frac{r}{K}, \sigma + \frac{c}{K})$ , *i.e.*  $S_i(\sigma + \frac{r}{K}, \frac{r-c}{K})$ . It is only defined across  $\delta$ -ridges spaced by 1/Kboth horizontally and vertically.

- In many scenarios, the acquisition of reliable instantaneous channel state information (CSI) becomes cumbersome and can degrade spectral efficiency of coherent systems.
- On the contrary, noncoherent communications do not require instantaneous CSI, instead relying on statistical knowledge of the channel.
- To effectively exploit this *statistical CSI*, the receiver can leverage various properties of fading, such as its spatial stationarity.
- Through the use of massive arrays, we access the asymptotic spectral properties of noncoherent SIMO systems, mirroring well-known ideas from time-series analysis in the spatial domain.
- We develop a technique to uncorrelate received data and distill the signal properties that are essential to the detection problem.

## **PROBLEM STATEMENT**

- Point-to-point SIMO, Rx has N antennas and statistical CSI.
- Correlated Rayleigh channel ( $\mathbf{h} \sim \mathcal{CN}(\mathbf{0}_N, \mathbf{C_h})$ ), block flat fading, coherence time K.
- $\blacksquare$  Tx sends an equiprobable codeword  $\mathbf{x}_i \in \mathbb{C}^K$  from a finite alphabet  $\mathcal{X}$  during a coherence block. For convenience, we parameterize it as  $\mathbf{x}_i \triangleq \sqrt{K\gamma_i \mathbf{u}_i}$ .
- Additive noise **Z** with i.i.d. components  $[\mathbf{Z}]_{r,c} \sim \mathcal{CN}(0, \mathbf{P}_{\mathbf{Z}})$ .
- Received signal in complex baseband time-space notation:

Tx:

Using these ideas, we can express the LLR (1) as  $N \to \infty$  in the KL domain:

$$\mathbf{L}_{a,b}(\mathbf{d}\boldsymbol{y}_{i}) = \int_{0}^{\frac{1}{K}} \left( \mathbf{d}\boldsymbol{y}_{i}^{\mathrm{H}} \boldsymbol{\Psi}_{i}^{\mathrm{H}} \left( \mathbf{D}_{b}^{-1} - \mathbf{D}_{a}^{-1} \right) \boldsymbol{\Psi}_{i} \mathbf{d}\boldsymbol{y}_{i} \right) (\sigma) + \ln \frac{|\mathbf{D}_{b}(\sigma)|}{|\mathbf{D}_{a}(\sigma)|} \mathbf{d}\sigma$$
(3)

where  $d\mathbf{y}_i(\sigma) \triangleq [d\mathbf{y}_i^{(0)}(\sigma), d\mathbf{y}_i^{(1)}(\sigma), \dots, d\mathbf{y}_i^{(K-1)}(\sigma)]$  and  $\mathbf{\Psi}_i \triangleq [\mathbf{u}_i \mathbf{U}_{\overline{i}}] \in \mathbb{C}^{K \times K}$ .

This representation displays the fundamental structures involved in the detection problem; mainly

$$\mathbf{D}_{\diamond}(\sigma) \triangleq \gamma_{\diamond} \mathbf{S}_{\mathsf{h}}(K\sigma) K \mathbf{P}_{\diamond} + \mathbf{P}_{\mathsf{Z}} \mathbf{I}_{K} \quad , \quad \diamond = a, b.$$
(4)



Figure 4. Normalized KL-Div estimated from (1) and (3) by averaging  $10^4$  Monte Carlo rounds.

### LIKELIHOOD RATIO STRUCTURE ANALYSIS



### Maximum likelihood (ML) detection:

To derive the (unconditional) likelihood function of the received signal, we must *vectorize* **Y** columnwise:



- The resulting received signal is  $\tilde{\mathbf{y}}|\mathbf{x}_i \sim \mathcal{CN}(\mathbf{0}_{KN}, \mathbf{C}_i \triangleq \mathbf{C}_h \otimes \mathbf{x}_i \mathbf{x}_i^{\mathrm{H}} + \mathrm{P}_{\mathbf{Z}}\mathbf{I}_{KN})$ .
- ML error probability is commonly bounded by the simpler pairwise error probability between codewords  $\mathbf{x}_a$  and  $\mathbf{x}_b$ :  $P_{a \to b} \triangleq \Pr\{L_{a,b}(\tilde{\mathbf{y}}) \leq 0 | \mathbf{x} = \mathbf{x}_a\}$ . The term  $L_{a,b}$  is the log-likelihood ratio (LLR) between hypotheses:

$$\mathbf{L}_{a,b}(\tilde{\mathbf{y}}) \triangleq \ln \frac{\mathbf{f}_{\tilde{\mathbf{y}}|\mathbf{x}_a}(\tilde{\mathbf{y}})}{\mathbf{f}_{\mathbf{x}_a}(\tilde{\mathbf{x}})} = \tilde{\mathbf{y}}^{\mathrm{H}}(\mathbf{C}_b^{-1} - \mathbf{C}_a^{-1})\tilde{\mathbf{y}} + \ln \frac{|\mathbf{C}_b|}{|\mathbf{C}_b|}.$$
 (1)

 $\blacksquare$  Using the relationship between the CL and KL representations of  $y_i(n)$  [2], expression (3) can be decomposed into four clear constituents:

$$\mathcal{L}_{a,b}(\mathrm{d}\mathsf{y}_i) = \ell_{a,b}(\mathbf{x}_i) + \ell_{a,b}(\mathsf{z}) + \ell_{a,b}(\mathbf{x}_i,\mathsf{z}) + \kappa_{a,b}$$
(5)

Signal term: 
$$\mathrm{E}[\ell_{a,b}(\mathbf{x}_i)] = \int_0^{\frac{1}{K}} \mathbf{u}_i^{\mathrm{H}}(|\rho_a(\sigma)|^2 \mathbf{P}_a - |\rho_b(\sigma)|^2 \mathbf{P}_b) \mathbf{u}_i \Gamma_i(\sigma) \mathrm{d}\sigma$$

Noise term: 
$$E[\ell_{a,b}(z)] = \int_0^{\frac{1}{K}} (|\rho_a(\sigma)|^2 - |\rho_b(\sigma)|^2) d\sigma$$

$$\mathbf{E}[\ell_{a,b}(\mathbf{x}_i, \mathsf{z})] = 0 \qquad \diamondsuit \qquad \mathbf{Constant \ term:} \ \kappa_{a,b} = \int_0^{\frac{1}{K}} \ln \frac{\Gamma_b(\sigma) + 1}{\Gamma_a(\sigma) + 1} \mathrm{d}\sigma$$

Terms  $\Gamma_{\diamond}(\sigma)$  and  $|\rho_{\diamond}(\sigma)|^2$  are, respectively, the SNR and squared spectral coherence of process  $y_{\diamond}(n)$  at point  $\sigma$  in the KL spectrum.



#### $= \operatorname{III} \frac{1}{\operatorname{f}_{\tilde{\mathbf{y}}|\mathbf{x}_{b}}(\tilde{\mathbf{y}})} = \mathbf{y} \quad (\mathbf{C}_{b} = \mathbf{C}_{a}) \mathbf{y} + \operatorname{III} \frac{1}{|\mathbf{C}_{a}|}$ $\mathbf{L}_{a,b}(\mathbf{y})$

The most relevant signal characteristics in the detection problem are not directly recognizable from the time-space formulation (1).

• The fundamental structure of the problem will emerge if we represent (1) in the KL domain asymptotically  $(N \to \infty)$ .

### Statistical properties of $\tilde{y}$ :

Assuming channel fading is spatially stationary (Figure 1), the resulting process  $\mathbf{y}_i(n) \triangleq [\tilde{\mathbf{y}} | \mathbf{x}_i]_n$  will display a CS behavior of period K (Figure 2).





#### -20 -30 -10 10 20 30 ()SNR [dB]

### References

Signal-noise term:

- J. Riba and M. Vila, "On infinite past predictability of cyclostationary signals," IEEE Signal *Processing Letters*, vol. 29, pp. 647–651, 2022. DOI: 10.1109/lsp.2022.3149705.
- M. Vilà-Insa and J. Riba, "Asymptotic analysis of synchronous signal processing," preprint [arXiv:2403.18445], 2024. arXiv: 2403.18445 [eess.SP].

### Funding

This work was funded by project MAYTE (PID2022-136512OB-C21) by MICIU/AEI/10.13039/501100011033 and ERDF/EU, grant 2021 SGR 01033 and grant 2022 FI SDUR 00164 by Departament de Recerca i Universitats de la Generalitat de Catalunya.



### ORCID: <sup>1</sup>0000-0002-7032-1411, <sup>2</sup>0000-0002-5515-8169



### {<sup>1</sup>marc.vila.insa, <sup>2</sup>jaume.riba}@upc.edu