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HIGHLIGHTS

♣ Objective: To characterize statistical properties of the received signal in a nonco-
herent massive SIMO setting.

♣ Approach:
• Vectorizing the time-space signal reveals a cyclostationary (CS) process.
• Its asymptotic structure can be effectively exploited in the Karhunen-Loève (KL) domain.

♣ Outcome: This spectral representation provides insights on noncoherent detection
with large arrays and unveils the fundamental parameters that play a role in it,
while pointing at simplified implementations.

BACKGROUND

� It is agreed among the scientific community that future wireless communications will
be built upon massive MIMO technologies.

� In many scenarios, the acquisition of reliable instantaneous channel state information
(CSI) becomes cumbersome and can degrade spectral efficiency of coherent systems.

� On the contrary, noncoherent communications do not require instantaneous CSI,
instead relying on statistical knowledge of the channel.

� To effectively exploit this statistical CSI, the receiver can leverage various properties
of fading, such as its spatial stationarity.

� Through the use of massive arrays, we access the asymptotic spectral properties of
noncoherent SIMO systems, mirroring well-known ideas from time-series analysis in
the spatial domain.

� We develop a technique to uncorrelate received data and distill the signal properties
that are essential to the detection problem.

PROBLEM STATEMENT

� Point-to-point SIMO, Rx has 𝑁 antennas and statistical CSI.
� Correlated Rayleigh channel (h ∼ 𝒞𝒩(0𝑁, Ch)), block flat fading, coherence time 𝐾.
� Tx sends an equiprobable codeword x𝑖 ∈ ℂ𝐾 from a finite alphabet 𝒳 during a

coherence block. For convenience, we parameterize it as x𝑖 ≜ √𝐾𝛾𝑖u𝑖.
� Additive noise Z with i.i.d. components [Z]𝑟,𝑐 ∼ 𝒞𝒩(0,PZ).
� Received signal in complex baseband time-space notation:

Tx: x ∈ ℂ𝐾

Rx: ⋯ + Y = xhT + Z ∈ ℂ𝐾×𝑁

Z ∈ ℂ𝐾×𝑁

𝑁

h ∈ ℂ𝑁

Maximum likelihood (ML) detection:
� To derive the (unconditional) likelihood function of the received signal, we must

vectorize Y columnwise:

= ỹ ≜ vec(Y) = X̃h + z̃
⋮

⋯Y =
vectorize

I𝑁 ⊗ x

vec(Z)

� The resulting received signal is ỹ|x𝑖 ∼ 𝒞𝒩(0𝐾𝑁, C𝑖 ≜ Ch ⊗ x𝑖xH
𝑖 + PZI𝐾𝑁).

� ML error probability is commonly bounded by the simpler pairwise error probability
between codewords x𝑎 and x𝑏: P𝑎→𝑏 ≜ Pr{L𝑎,𝑏(ỹ) ≤ 0|x = x𝑎}. The term L𝑎,𝑏 is
the log-likelihood ratio (LLR) between hypotheses:

L𝑎,𝑏(ỹ) ≜ ln
fỹ|x𝑎

(ỹ)
fỹ|x𝑏

(ỹ)
= ỹH(C−1

𝑏 − C−1
𝑎 )ỹ + ln |C𝑏|

|C𝑎|
. (1)

� The most relevant signal characteristics in the detection problem are not directly
recognizable from the time-space formulation (1).

LIGHTBULB The fundamental structure of the problem will emerge if we represent (1) in the
KL domain asymptotically (𝑁 → ∞).

Statistical properties of ỹ:

� Assuming channel fading is spatially stationary (Figure 1), the resulting process
y𝑖(𝑛) ≜ [ỹ|x𝑖]𝑛 will display a CS behavior of period 𝐾 (Figure 2).

Ch =
Figure 1. Toeplitz
covariance matrix
corresponding to a
stationary process.

C𝑖 =
Figure 2. 𝐾-Toeplitz
(𝐾 = 2) covariance
matrix corresponding
to a CS process.

SPECTRAL ANALYSIS OF THE RECEIVED SIGNAL

� A CS process y𝑖(𝑛) of period 𝐾 can be expanded onto its KL basis {𝜙(𝑘)
𝑖 (𝑛, 𝜎)} as:

y𝑖(𝑛) ≜
𝐾−1
∑
𝑘=0

∫
1
𝐾

0
𝜙(𝑘)

𝑖 (𝑛, 𝜎)dy (𝑘)
𝑖 (𝜎), (2)

where dy (𝑘)
𝑖 (𝜎) are uncorrelated increments in the KL spectral domain.

� In [1], [2] the asymptotic KL basis of y𝑖(𝑛) was derived in terms of its cyclic spectrum
matrix (CSM), S𝑖(𝜎) ∈ ℂ𝐾×𝐾. It can be constructed from its spectral correlation in
the Cramér-Loève (CL) domain, as shown in Figure 3.

S𝑖(𝑓, 𝛼) =

𝑓

𝑓 − 𝛼(0, 0)

(1, 1)1/𝐾

≜ S𝑖(𝜎)

𝜎
𝜎

Figure 3. Graphical representation of the
construction of [S𝑖(𝜎)]𝑟,𝑐 from the spectral
correlation of y𝑖(𝑛) at frequencies
(𝜎 + 𝑟

𝐾, 𝜎 + 𝑐
𝐾), i.e. S𝑖(𝜎 + 𝑟

𝐾, 𝑟−𝑐
𝐾 ). It is

only defined across 𝛿-ridges spaced by 1/𝐾
both horizontally and vertically.

� Using these ideas, we can express the LLR (1) as 𝑁 → ∞ in the KL domain:

L𝑎,𝑏(dy 𝑖) = ∫
1
𝐾

0
(dyH𝑖 𝚿H

𝑖 (D−1
𝑏 − D−1

𝑎 )𝚿𝑖dy𝑖)(𝜎) + ln |D𝑏(𝜎)|
|D𝑎(𝜎)|

d𝜎 (3)

where dy𝑖(𝜎) ≜ [dy (0)
𝑖 (𝜎),dy (1)

𝑖 (𝜎), … , dy (𝐾−1)
𝑖 (𝜎)] and 𝚿𝑖 ≜ [u𝑖 U𝑖] ∈ ℂ𝐾×𝐾.

� This representation displays the fundamental structures involved in the detection prob-
lem; mainly

D⋄(𝜎) ≜ 𝛾⋄Sh(𝐾𝜎)𝐾P⋄ + PZI𝐾 , ⋄ = 𝑎, 𝑏. (4)
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Figure 4. Normalized KL-Div
estimated from (1) and (3) by
averaging 104 Monte Carlo
rounds.

LIKELIHOOD RATIO STRUCTURE ANALYSIS

� Using the relationship between the CL and KL representations of y𝑖(𝑛) [2], expres-
sion (3) can be decomposed into four clear constituents:

L𝑎,𝑏(dy𝑖) = ℓ𝑎,𝑏(x𝑖) + ℓ𝑎,𝑏(z) + ℓ𝑎,𝑏(x𝑖, z) + 𝜅𝑎,𝑏 (5)

ARROW-CIRCLE-RIGHT Signal term: E[ℓ𝑎,𝑏(x𝑖)] = ∫
1
𝐾

0
uH

𝑖 (|𝜌𝑎(𝜎)|2P𝑎 − |𝜌𝑏(𝜎)|2P𝑏)u𝑖Γ𝑖(𝜎)d𝜎

ARROW-CIRCLE-RIGHT Noise term: E[ℓ𝑎,𝑏(z)] = ∫
1
𝐾

0
(|𝜌𝑎(𝜎)|2 − |𝜌𝑏(𝜎)|2)d𝜎

ARROW-CIRCLE-RIGHT Signal-noise term: E[ℓ𝑎,𝑏(x𝑖, z)] = 0 ARROW-CIRCLE-RIGHT Constant term: 𝜅𝑎,𝑏 =∫
1
𝐾

0
ln Γ𝑏(𝜎)+1

Γ𝑎(𝜎)+1d𝜎

� Terms Γ⋄(𝜎) and |𝜌⋄(𝜎)|2 are, respectively, the SNR and squared spectral coherence
of process y⋄(𝑛) at point 𝜎 in the KL spectrum.
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Figure 5. Squared spectral coherences in
terms of SNR.
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