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The Majorization-Minimization algorithm

The Majorization-Minimization (MM) is a widely used framework that finds the solution
of (almost) any optimization problem. It consists on the following principle [1]:

It is the generalization of known optimization frameworks (among others).

Issue: Classical proofs of convergence of the MM algorithm assume that the under-
lying constraint sets are convex.

Grassmann manifold and G-convex optimization

Relevant concepts of geometry for optimization:

• The Grassmann manifold, Gr(N,D), is the set that contains the subspaces of
dimension D in RD (it is a non-convex set):

[X] = {XR ∈ RN×D :XTX = ID,R ∈ O(D)}. (1)

• Grassmann geodesics:

• Geodesic quasiconvexity:

f(Γ(t)) ≤ max(f(X), f(Y)) ∀X,Y ∈ G. (2)

• Geodesic convexity (it is restrictive in practice [2]):

f(Γ(t)) ≤ (1− t)f(X) + tf(Y) ∀t ∈ [0, 1]. (3)

Block MM algorithm on the Grassmannian

The block MM algorithm on Gr(N,D) aims to solve an optimization problem of the following form:

Ĝ, ĉ = argmin
G,c

f (G, c) s.t. G ∈ G ⊆ Gr(N,D), c ∈ C ⊆ RM , (4)

using update equations that are given by:

Gi+1 = argmin
G

gG(G|Gi, ci) G ∈ G, (5a)

ci+1 = argmin
c
gc(c|Gi+1, ci) c ∈ C. (5b)

The previous setting must satisfy the following assumptions so that the aforementioned update
equations converges to a stationary point of the original problem [3]:

(A1) The surrogates must have the same value as the original cost at the current iterate:

gG(G|G, c) = f (G, c) ∀G ∈ G,∀c ∈ C,
gc(c|G, c) = f (G, c) ∀G ∈ G,∀c ∈ C.

(A2) The surrogates must majorize the original cost function:

gG(H|G, c) ≥ f (G, c) ∀G,H ∈ G,∀c ∈ C,
gc(d|G, c) ≥ f (G, c) ∀G ∈ G,∀c,d ∈ C.

(A3) The first (lower) directional derivatives of the surrogates and of the original cost must agree:

g′G(G|G, c;∆) = f ′(G, c;∆,0),

for all tangent directions ∆ ∈ TGGr(N,D) whose resulting geodesic remains on G and:

g′c(c|G, c; δ) = f ′(G, c;0, δ) s.t. c + δ ∈ C.

(A4) gG(·|·) and gc(·|·) must be continuous on its input arguments and must have unique minimiz-
ers.

(A5) gG(G|G, c) must be geodesically quasiconvex on G and gc(c|G, c) must be quasiconvex on
C.

(A6) f (G, c) must have a set of stationary points and must be regular in G × C.

The kind of convergence (local or global optimum) depends on the cardinality of the set of station-
ary points of (4). In practice, one can only expect local optimums in the block MM algorithm on
the Grassmannian.

Example 1: Blind sparse deconvolution

The original blind sparse deconvolution problem is based on the following optimization
problem [4]:

min
a,x

||y − a⊛ x||22+ λ||x||1 s.t. ||a||22 = 1. (6)

Note that the previous expression has a sign ambiguity. This means that it can be
further rewritten as:

min
a,x

||y − a⊛ x||22+ λ||x||1 s.t. a ∈ Gr(N, 1), (7)

which does not have the sign ambiguity. One way to solve the previous optimization
problem is by means of the following update equations [4] (ψ(a,x) = ||y − a⊛ x||22):

xi+1 = proxℓ1,λη(xi − η∇xψ(ai,xi)), (8a)

ai+1 = expa (gradaψ(ai,xi+1)) , (8b)
where:

expa(g) = γ(1), (9)
is the exponential mapping at a of the Grassmann manifold. The update equations in
(8) is the block extension of two optimization frameworks: the Proximal gradient method
for x and the Riemannian gradient descent for a.

Example 2: Minimum error entropy criterion for the blind
fusion and regression problem

Consider K realizations of a block model that gathers N measurements of N sen-
sors:

Yk = xk1
T +Wk k = 1, ..., K, (10)

where:
x =Bu. (11)

After doing some magic (!) using the Conditional Maximum Likelihood principle and
introducing the Arithmetic Average fusion of the measurements, gk =Ykf , the pre-
vious problem can be solved by minimizing:

f̂ , Ĥ = argmin
f ,H

log(det(Q̂ML(H, f)))

s.t. fT1 = 1, H ∈ Gr(N,D),
(12)

where Q̂ML(H, f) = 1
K

∑K
k=1 Ĉk(H, f) and:

Ĉk(B, f) =
1
N
(Yk −PHYkf1

T )T (Yk −PHYkf1
T ). (13)

Notice that the log-determinant function is majorized by its Taylor series expansion:

ℓ(H, f) ≤ log(det(Z−1
k )) + tr

(
Zk

(
Q̂ML(H, f)− Q̂ML(Hk, fk)

))
, (14)

where Zk =
(
Q̂ML(Hk, fk)

)−1
.

Numerical results of the blind fusion and regression
problem
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