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ABSTRACT

Multibeam technology constitutes a key enabler for integrated sens-
ing and communications (ISAC). Previous designs for millimeter-
wave monostatic ISAC often overlook the self-interference (SI) in-
duced on the co-located radar receiver and/or relax the hardware-
imposed constant-modulus (CM) constraints. We address the multi-
beam optimization problem in monostatic ISAC with CM analog ar-
rays, explicitly accounting for SI. First, we relax the CM constraints
and provide a semi-analytic solution that illustrates the impact of SI
on the communication-sensing tradeoff. The design is then adapted
to CM analog beamformers, substantially reducing the performance
loss incurred if CM constraints are naively imposed.

Index Terms— Integrated sensing and communications, multi-
beam, dual-functional radar-communications, analog beamforming.

1. INTRODUCTION

Integrated sensing and communications (ISAC) has been identified
as a core technology for future wireless communications networks
[1,2]. In ISAC systems, sensing and communication functions share
the hardware platform, signaling and radio spectrum, which can pro-
vide mutual benefits and enable several applications envisioned in
6G, e.g., autonomous driving, smart homes, and unmanned aerial
vehicles (UAV) or vehicle-to-everything (V2X) networks [3, 4].

Millimeter-wave (mmWave) spectrum is particularly well suited
for ISAC, as large bandwidths allow resolving several multipath
components, thus improving range resolution [5]. Moreover, small
wavelengths imply compact large-aperture arrays that synthesize
narrow beams, yielding high angular resolutions [6]. However,
propagation at these frequencies suffers from severe path and pene-
tration losses, requiring the use of directional beamforming [7].

Beamforming design for ISAC is challenging, especially with
fully analog arrays using a single radio-frequency (RF) chain, given
the different requirements of communication and sensing subsys-
tems [8]. Multibeam beampattern design [9], also known as dual-
functional beamforming, has been widely studied for balancing
communication and sensing performances [4]. Most of the exist-
ing multibeam designs for hybrid or fully analog arrays are based
on combining pre-designed communication-optimal and sensing-
optimal solutions, via power control [10–15] or phase rotation and
power control [16, 17]. Despite their simplicity and practicality,
these designs only provide suboptimal solutions.

∗Supported by MICIU/AEI/10.13039/501100011033 and by ERDF/EU
under grant PID2022-136512OB-C21, and by grant 2021 SGR 01033.

†Supported by MICIU/AEI/10.13039/501100011033 and by ERDF/EU
under grant PID2022-136512OB-C22.

TX DAC + 
RF chain

RX ADC + 
RF chain

…

Radar 
Processing

…

RX ADC + 
RF chain…

Target

ISAC Transceiver Communication Receiver

Fig. 1: Monostatic ISAC setting with phase-shifter based analog arrays. The
ISAC transceiver serves a multi-antenna communication receiver while si-
multaneously monitoring a target located at direction θt.

Global optimal solutions for fully digital beamformers are dis-
cussed in, e.g., [14, 18–21]. However, these architectures are im-
practical at mmWave, since a dedicated per-antenna RF chain and a
digital-to-analog converter/analog-to-digital converter (DAC/ADC)
entail prohibitive power consumption. For fully analog arrays,
[17] provides an optimal multibeam design, but incorporating per-
antenna gain control to circumvent the intractable constant-modulus
(CM) constraints inherent to the use of phase shifters. Moreover,
[17] also overlooks the self-interference (SI) induced by the transmit
array on the sensing array in monostatic settings. Some works deal-
ing with SI typically use not only transmit beamforming but also
RF cancellation at the radar receiver [11, 22]. While this is effective
to prevent ADC saturation, it adds complexity and cost, and RF
components preceding the SI analog canceler remain unprotected.

We present a novel analog multibeam design that explicitly
accounts for SI and CM design constraints. First, we provide a
semi-analytic relaxed optimal solution exhibiting maximum beam-
forming gain for communications while guaranteeing the required
beamforming gain for sensing and limiting the transmitted SI. The
proposed adaptation of this design scheme to incorporate CM con-
straints improves previous analog designs in balancing the three-fold
tradeoff between communication, sensing, and SI cancellation.

2. PROBLEM SETTING

Consider the mmWave scenario of Fig. 1, in which an ISAC
transceiver equipped with separate transmit-sensing analog arrays si-
multaneously serves a multi-antenna communication node with MC

antennas and tracks a target located at a certain known direction.
The ISAC transceiver has MT transmit and MS sensing antennas.

We assume CM phased arrays, i.e., each antenna is connected
to a phase shifter with no individual gain control. The transmit,
sensing, and receive beamforming vectors are respectively denoted
f ∈ CMT , ws ∈ CMS , and wc ∈ CMC . The analog implemen-
tation shown in Fig. 1 imposes constraints on their entries, so that
f ∈ VMT , ws ∈ VMS , and wc ∈ VMC , with

Vm ≜ {x ∈ Cm : |xi| = 1, 1 ≤ i ≤ m} . (1)



It is assumed that the communication channel Hc ∈ CMC×MT ,
the SI channel HSI ∈ CMS×MT , and the target response matrix
HS ∈ CMS×MT are frequency-flat, as in [17]. This assumption im-
plies narrowband transmission and that the beam squint effect on
the steering vectors is negligible. We also assume that Hc and HSI

have been estimated a priori using pilot-assisted mmWave channel
acquisition techniques (see, e.g., [1, Sec. III-B]).

The ISAC transceiver sends a data stream {s[l]}, with l indexing
the channel use, of complex zero-mean, unit-variance symbols, so
that the transmitted signal reads as x[l] = fs[l] ∈ CMT . After
receive processing, the received baseband communication signal is

y[l] = wH
c Hcfs[l] +wH

c nc[l], (2)

where nc[l] ∼ NC(0, σ
2
c IMC) is circularly-symmetric Gaussian

noise. Note that, for given transmit beamformer f , the optimal
receive beamformer is an equal-gain combiner with

[wc]i = eı∡[Hcf ]i , i ∈ {1, . . . ,MC}. (3)

The co-located radar suffers from SI when the isolation between TX
and sensing arrays is weak and the length of {s[l]} is larger than the
target’s echo round-trip time. Thus, the radar observation reads as

r[l] = wH
s HSfs[l] +wH

s HSIfs[l]︸ ︷︷ ︸
Post-combining SI

+wH
s ns[l], (4)

with ns[l] ∼ NC(0, σ
2
s IMS) the sensing noise. SI not only degrades

radar performance, but it can also saturate the RF components of the
sensing array. Typically, transmit and sensing beamformers f , ws

are jointly designed to maximally suppress the post-combining SI
(see, e.g., [11,15]). Despite their effectiveness in avoiding ADC sat-
uration and improving sensing performance, these approaches need
not avoid saturation of the RF circuitry preceding the analog com-
biner [23]. In this regard, the pre-combining SI power

PSI ≜ E{∥HSIfs[l]∥2} = fHHH
SI HSIf (5)

should be kept below a threshold so that all RF components preced-
ing ws operate within the linear region. With this in mind, our goal
is to design the CM analog transmit beamformer f to maximize the
communication beamforming gain, given by

Gtx,comm ≜ fHHH
c Hcf , (6)

while keeping the pre-combining SI power in (5) below a threshold
η2 and the beamforming gain for sensing, given by

Gtx,sen(θt) ≜
∣∣∣fHaT(θt)

∣∣∣2 , (7)

above a preset threshold τ2. In (7), aT(θ) denotes the transmit ar-
ray steering vector at direction θ, satisfying ∥aT(θ)∥2 = MT. Note
that, once f is available, wc is given by (3), whereas ws can be de-
signed following a maximal radar signal-to-interference-plus-noise
ratio (SINR) rule as in [24]. Next we focus on the design of the
transmit beamformer f .

3. SI-AWARE CM ANALOG MULTIBEAM DESIGN

Next we present a CM analog beamformer design scheme for mono-
static ISAC accounting for the impact of SI. Initially, in Sec. 3.1
we relax the CM constraints and address the problem under a total
power constraint. This provides an insightful semi-analytic solu-
tion that will be appropriately modified in Sec. 3.2 to handle the
intractable CM constraints.

3.1. Design under a total power constraint

Individual gain control can be achieved by including a variable-gain
amplifier (VGA) per antenna. The CM constraint f ∈ VMT is thus
replaced by a norm constraint on f , and the design problem reads as

max
f∈CMT

Gtx,comm (8a)

s.t. (a) Gtx,sen(θt) ≥ τ2, (b) PSI ≤ η2, (c) ∥f∥2 = MT. (8b)

Note that (8) is feasible iff η2 ≥ MTλmin

(
HH

SI HSI
)
, τ2 ≤

MT∥aT(θt)∥2 and G⋆
tx,sen(θt) ≥ τ2, where

G⋆
tx,sen(θt) ≜ max

f∈CMT
Gtx,sen(θt) s.t. PSI ≤ η2, ∥f∥2 = MT. (9)

Note that (8) is a quadratically constrained quadratic program
(QCQP) with three constraints, so it can be solved, if feasible,
via semidefinite relaxation (SDR) [25, 26]. However, to gain some
insight into the CM design to be discussed in Sec. 3.2, we adopt
a different approach to obtain a semi-analytic solution. Define the
MT × MT positive semidefinite matrices A ≜ HH

c Hc, B ≜
aT(θt)a

H
T (θt), C ≜ HH

SI HSI, and let H(µ, γ) ≜ A + µB − γC,
where µ ≥ 0, γ ≥ 0 are the Lagrange multipliers for constraints (a)
and (b) in (8b). Then, the Lagrangian for problem (8) reads as

L(f , µ, γ, λ)=fH (−H(µ, γ)+λIMT)f+µτ2−γη2−λMT, (10)

where λ is the Lagrange multiplier associated with constraint (c) in
(8b). Appendix A shows that the optimal solution for (8) is given by

f⋆ =
√
MTD [H(µ⋆, γ⋆)] , (11)

where D[X] returns the dominant unit-norm eigenvector of X .
Since the optimal values µ⋆, γ⋆ do not admit a closed-form solution,
we undertake the following procedure to attempt to solve (8):

1. First, check whether the solution obtained by relaxing constraints
(a) and (b) in (8b) is feasible, in which case f⋆ =

√
MTD [A]

solves (8). Otherwise, proceed to Step 2.

2. Relaxing either constraint (a) or (b) in (8b), solve:

f(a) = argmax
f∈CMT

Gtx,comm s.t. Gtx,sen = τ2, ∥f∥2 = MT,(12)

f(b) = argmax
f∈CMT

Gtx,comm s.t. PSI = η2, ∥f∥2 = MT. (13)

Let α ≜ fH
(a)Cf(a) and β ≜ fH

(b)Bf(b). Then, the solution f⋆

to (8) is given by

f⋆ =


f(a) if α ≤ η2 and β ≤ τ2,

f(b) if α ≥ η2 and β ≥ τ2,

argmax
{f(a),f(b)}

Gtx,comm if α ≤ η2 and β ≥ τ2.
(14)

If α ≥ η2 and β ≤ τ2, proceed to Step 3.

3. When both constraints (a) and (b) in (8) are active, i.e., µ > 0 and
γ > 0, the optimal µ⋆ and γ⋆ are such that constraints (a) and (b)
are simultaneously satisfied with equality, i.e., fH

⋆ BfH
⋆ = τ2

and fH
⋆ CfH

⋆ = η2.

Regarding Step 2, the structure of f(a) and f(b) can be inferred from
Appendix A (by setting γ = 0 or µ = 0), and is given by

f(a) =
√
MTD [A+ µ⋆B] , f(b) =

√
MTD [A− γ⋆C] , (15)



where µ⋆ and γ⋆ are such that fH
(a)Bf(a) = τ2 and fH

(b)Cf(b) =

η2, respectively, and can be found via line search.
As for Step 3, one must find the values of µ, γ ∈ [0,∞) at

which the principal eigenvector of H(µ, γ) simultaneously satisfies
constraints (a) and (b) in (8b) with equality. To reduce the search
space for µ and γ, we will consider the matrix

1

1 + µ+ γ
H(µ, γ) = (1− α1 − α2)A+ α1B − α2C, (16)

with α1 = µ
1+µ+γ

∈ [0, 1], α2 = γ
1+µ+γ

∈ [0, 1 − α1]. Note that
(16) has the same eigenvectors as H(µ, γ). Letting α ≜ [α1, α2]

T

and u ≜
√
MTD[(1−αT1)A+α1B−α2C], the problem amounts

to finding the roots of q : R2 → R2 defined by

q(α) ≜

[
q1(α)
q2(α)

]
=

[
uHBu− τ2

uHCu− η2

]
. (17)

Since both q1(α) and q2(α) are nonlinear, one has to resort to root-
finding schemes. We propose using the Newton-Raphson method
[27, Ch. 7], which iteratively updates the root of (17) as

αn+1 = αn − J−1
q (αn)q(αn), (18)

where Jq(α) is the Jacobian matrix of q(α) (whose derivation is
given in Appendix B), with [Jq(α)]ij = ∂

∂αj
qi(α). This approach

has to be run until convergence, i.e., until there is a root such that
constraints (a) and (b) in (8b) are met within a sufficiently small tol-
erance ϵ. The Newton-Raphson method converges fast, but it needs
a sufficiently accurate initial estimate of the root. We have observed
that 2D bisection search with moderate tolerance (e.g., 10−2) suf-
fices to efficiently obtain a good initialization.

3.2. Design under CM constraints

Restoring the original CM constraints, the problem now reads as

max
f

Gtx,comm (19a)

s.t. (a) Gtx,sen(θt) ≥ τ2, (b) PSI ≤ η2, (c) f ∈ VMT . (19b)

Some options to enforce the original CM constraints are as follows.
The first one is straightforward and consists in projecting the norm-
constrained solution from Sec. 3.1 onto the set of CM vectors VMT ,
which is done by dividing each entry by its modulus. However, this
may yield a CM beamformer not meeting constraints (a) or (b) in
(8b). In the second approach the CM constraints are squared up,
replacing |fi| = 1 by |fi|2 = 1, and then the resulting QCQP with
MT +2 constraints is addressed via SDR. However, this approach is
not tight in general.

As a third alternative, we propose modifying the three-step pro-
cedure described in Sec. 3.1 to enforce the CM constraint (c) in
(19b) at each iteration of the bisection search in Step 2 and of the
Newton-Raphson method in Step 3. Due to space limitations, we
just sketch this procedure as Algorithm 1, where PVn{x} represents
the projection of x ∈ Cn onto Vn.

4. NUMERICAL EXAMPLE

The proposed algorithm is tested in the scenario shown in Fig. 1,
adopting at the ISAC transceiver the array geometry described in [28,
Fig. 2] with α = β = π

2
and δ = 2λ (λ is the carrier wavelength).

Both communication and SI channels are modeled as in [28]. For the

Algorithm 1: Proposed CM Analog Beamforming Design
Input: A, B, C, τ2, η2 ϵ, ωmin = 0, ωmax = 1, α0

Output: f⋆

1 Set f ← PVMT {D [A]};
2 if fHBf < τ2 or fHCf > η2 then
3 f(a) ← CMBisection(A,B, τ2, ϵ, ωmin, ωmax);
4 f(b) ← CMBisection(A,C, η2, ϵ, ωmin, ωmax);
5 if fH

(a)
Cf(a) > η2 and fH

(b)
Bf(b) < τ2 then

6 f ← CMNewton(A,B,C, τ2, η2, ϵ,α0);
7 else
8 Find f via (14);
9 end

10 end
11 f⋆ ← f ;

12 Function CMBisection(X,Y , β, ϵ, ωmin, ωmax)
13 repeat
14 ω ← (ωmin + ωmax)/2;
15 g ← PVMT {D [(1− ω)X + ωY ]};
16 if gHY g > β, then ωmax ← ω;
17 else, ωmin ← ω, end;
18 until |gHY g − β| ≤ ϵ;
19 return g

20 end

21 Function CMNewton(X,Y ,Z, β1, β2, ϵ,α0)
22 u← PVMT {D[(1−αT

0 1)X +α0[1]Y −α0[2]Z]};
23 repeat
24 Update α via (17)-(18);
25 u← PVMT {D[(1−αT 1)X +α[1]Y −α[2]Z]};
26 until |uHY u− β1| ≤ ϵ and |uHZu− β2| ≤ ϵ;
27 return u

28 end

communication channel, we adopt the Saleh-Valenzuela narrowband
clustered model with Ncluster clusters and Nray rays per cluster:

Hc =
∑Ncluster

i=1

∑Nray

j=1
gijaR(ϕij)a

H
T (θij), (20)

where gij , θij , and ϕij denote complex path gains, angles of
departure (AoD), and angles of arrival (AoA), respectively; and
aT(θ), aR(ϕ) denote the TX and RX array steering vectors, with
∥aT(θ)∥2 = MT, ∥aR(ϕ)∥2 = MC ∀θ, ϕ. We assume that the SI
channel has a Line-of-Sight (LOS) component due to near-field cou-
pling, modeled as [H (LOS)

SI ]pq = 1
rpq

exp{−ı2πrpq
λ

}, with rpq the
distance between the q-th TX and p-th RX array elements. The Non-
LOS (NLOS) component H (NLOS)

SI is due to reflections by nearby
scatters and is modeled analogously to (20). With this, after normal-
izing so that ∥H (LOS)

SI ∥2F = ∥H (NLOS)
SI ∥2F = MTMS, the SI channel is

obtained as HSI =
√

κ
1+κ

H (LOS)
SI +

√
1

1+κ
H (NLOS)

SI , where κ is the

Rice factor. In the simulation, we considered MT = 32, MS = 8,
and MC = 16, Ncluster = 7, Nray = 5, and κ = 10 dB. AoDs, AoAs,
and the target direction are assumed Gaussian distributed, with mean
angle uniformly distributed over [0, 360◦] and standard deviation 8◦.
Complex path gains are also Gaussian distributed with mean 1.2589
(corresponding to 1 dB) and variance 1.122 (corresponding to 0.5
dB). Channel matrices are normalized so that ∥Hc∥2F = MTMC and
∥HSI∥2F = MTMS.

With respect to the optimization problem (19), we let τ2 ∈
[0,M2

T ]. Regarding to η2, it must limit the maximum SI leaked
into the sensing array, which is given by MTλmax(H

H
SI HSI) =

MTsmax(HSI) (smax(X) returns the maximum singular value of
matrix X). Since MTsmax(HSI) ≤ MT∥HSI∥2F = M2

TMS, we



Fig. 2: Beamforming gain for communications (6) vs. the preset sensing
threshold τ2 for η2 = 25 dB (left) and η2 = 15 dB (right) obtained with
the proposed method and the considered benchmarks.

set η2 = ζM2
TMS, with ζ ∈ { 1

250
, 1
25
}, which corresponds to

η2 ∈ {15, 25} dB with the simulation parameters adopted. As
benchmarks, we considered: (i) SDR with CM: solving (19) via
SDR and obtaining a rank-one solution through eigendecomposition
(EVD); (ii) CC with CM: a convex combination (CC) of the commu-
nication optimal solution (under maximum SI and CM constraints)
fcom and the sensing optimal solution (under maximum SI and CM
constraints) fsen, i.e., f = ρfcom + (1 − ρ)fsen, with ρ found via
bisection search to satisfy the sensing constraint and a final projec-
tion (FP) onto VMT ; (iii) Prop. Relaxed+FP: the projection onto
VMT of the proposed relaxed design of Sec. 3.1; and (iv) SDR Re-
laxed+FP: solving (8) via SDR, extracting a rank-one solution via
EVD, and projecting the result onto VMT . For reference, we show
the communication-sensing upper bound, i.e., solving (8) neglecting
the SI constraint.

Fig. 2 illustrates the achieved communication beamforming gain
versus the sensing threshold τ2 and for two SI thresholds, averaged
over 500 Monte Carlo trials. It is seen that the proposed algorithm
in Sec. 3.2 achieves a communication-sensing performance close to
the upper bound for both values of η2. Except for benchmark (ii),
the other ones track the proposed method closely, especially at low-
to-moderate values of τ2. However, benchmark (i) often becomes
unfeasible: since the number of constraints exceeds three, the SDR
approach is not tight and it is difficult to find a rank-one solution that
simultaneously satisfies all design constraints, which occurs in about
40% of the trials. Relaxing the CM constraints as in Sec. 3.1, the
proposed method provides a solution satisfying all design constraints
under total power constraints, but projecting it onto VMT to impose
CM constraints, as benchmark (iii) does, frequently violates the SI
constraint for moderately stringent η2; the probability of this event
is about 20% with η2 = 25 dB, rising to 49% at η2 = 15 dB, so this
benchmark likely provides unfeasible CM analog beamformers. A
similar issue arises with benchmark (iv): the relaxed solution can be
obtained via SDR, but its projection onto VMT almost surely violates
the SI constraint, making it unfeasible in CM settings.

5. CONCLUSIONS

We have addressed the design of multibeam analog beamformers
for monostatic ISAC under SI. For cases in which the analog array

is equipped with per-antenna VGAs and the CM constraints are re-
laxed, we have derived a semi-analytic solution in which only the
Lagrange multipliers have to be numerically computed. For analog
phased arrays without VGAs, we have proposed a modified design
based on projecting the relaxed solution onto the feasible set at each
iteration, simultaneously enforcing all design constraints and achiev-
ing communication-sensing performance closed to the upper bound.

Although we have adopted a narrowband model, the proposed
CM-constrained transmit beamformer design can be readily ex-
tended to practical broadband mmWave scenarios, since fully-analog
transmit beamformer is frequency-independent.

APPENDICES

A. STRUCTURE OF THE SOLUTION TO (8)

Let A ⪰ 0, B ⪰ 0, C ⪰ 0, and consider the problem
max
x∈Cm

xHAx (21a)

s.t. xHBx ≥ b2, xHCx ≤ c2, ∥x∥2 = m. (21b)

Let µ ≥ 0, γ ≥ 0 and λ be the Lagrange multipliers respectively as-
sociated with the three constraints in (21b). Defining H(µ, γ) ≜
A + µB − γC, the Lagrangian for (21) reads L(x, µ, γ, λ) =
xH(−H(µ, γ) + λIm)x + µb2 − γc2 − λm. Equating to zero
the gradient of L(x, µ, γ, λ) with respect to x, it is seen that the
optimal x must be an eigenvector of H(µ, γ) with eigenvalue λ.

Let F be the feasible set for (21). The dual function g(µ, γ, λ) =
infx∈F L(x, µ, γ, λ), is bounded below as long as H(µ, γ) ⪯
λIm. Then, it is seen that the value of λ maximizing g is the max-
imum eigenvalue of H(µ, γ), denoted by σ1(µ, γ), and g̃(µ, γ) ≜
maxλ g(µ, γ, λ) s.t. H(µ, γ) ⪯ λIm equals g̃(µ, γ) = µb2 −
γc2 − mσ1(µ, γ). This is upper bounded by the objective function
[29, Ch. 5], so that µb2 − γc2 −mσ1(µ, γ) ≤ −xHAx, ∀x ∈ F ,
reflecting the duality gap. Suppose one can find µ⋆, γ⋆ such that,
with x⋆ =

√
mD[H(µ⋆, γ⋆)], it holds that xH

⋆ Bx⋆ = b2 and
xH

⋆ Cx⋆ = c2. Then it follows that µ⋆b
2 − γ⋆c

2 −mσ1(µ⋆, γ⋆) =
−xH

⋆ Ax⋆, so the duality gap is zero, and x⋆ is optimal.

B. COMPUTATION OF THE JACOBIAN MATRIX

Each entry of the Jacobian matrix has the same generic structure:
∂

∂αi

(
uHPu− p2

)
, i ∈ {1, 2} (22)

where u is the principal eigenvector of M = (1−αT1)A+α1B−
α2C, P ⪰ 0, and p ∈ R. The partial derivative in (22) amounts to
u̇H

i Pu+ uHP u̇i, where u̇i ≜ ∂u/∂αi. From [30] one has u̇i =
V Tie1, where V is the eigenmatrix of M , e1 is the first column of
IMT , and Ti is a skew-Hermitian matrix with entries [Ti]kℓ = tkℓ(i),
1 ≤ k, ℓ ≤ MT. For k ̸= ℓ, one has tkℓ(i) = vH

k Ṁivℓ/(λℓ − λk),
where Ṁi ≜ ∂M/∂αi, vk is the k-th eigenvector of M , and λk

is its associated eigenvalue. For k = ℓ, the coefficients tkk(i) are
purely imaginary, but their expression is unknown. As it turns out,
(22) does not depend on {tkk(i)}, as shown next.

Let us write Ti = Zi + ıDi, where Di is a real diagonal ma-
trix with entries Im{tkk(i)}, 1 ≤ k ≤ MT, and Zi is obtained
from Ti after setting its diagonal entries to zero. Then, note that
u̇i = V Tie1 = V Zie1+ıV Die1 = V Zie1+ıIm{t11(i)}V e1.
Substituting this in (22), and recalling that u = V e1, it is found that

∂

∂αi

(
uHPu− p2

)
= eH

1 ZH
i V HPu+ uHPV Zie1, (23)

which does not depend on Di.
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