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Abstract—Many emerging wireless applications require the
simultaneous execution of multiple functions, such as information
transmission and reception, or communication and sensing. This
has driven the study of different means to optimize perfor-
mance tradeoffs. Among these, the design of multi-functional
beamformers often involves nonconvex quadratically constrained
quadratic programs (QCQPs), which are commonly approached
via semidefinite relaxation (SDR). Two well-known issues affect-
ing the SDR approach are its tightness and the ability to extract
a QCQP-feasible solution from the SDR solution. In this context,
we identify a sufficient condition for strong duality of a class of
nonconvex QCQPs, in which case the exact optimal solution can
be readily obtained. The applicability of the proposed framework
to the design of multi-functional beamformers is illustrated.

Index Terms—Multi-functional beamforming, integrated sens-
ing and communication, in-band full-duplex communications,
self-interference cancellation.

I. INTRODUCTION

MULTI-FUNCTIONAL beamforming has arisen as a
key enabler for a range of applications envisioned for

next-generation wireless networks involving the coexistence
of several subsystems [1–3]. In essence, a beamformer is
designed to either maximize a quality-of-service (QoS) metric
for one subsystem, or to minimize the interference induced
on one or several subsystems, while guaranteeing certain
performance requirements for the remaining ones.

An application example is the underlay paradigm in cog-
nitive radio networks: a secondary transmitter adjusts its
beampattern to maximize the secondary network rate while
limiting its interference to primary users [4], [5]. Another
example is in-band full-duplex (IBFD) communication [6],
where transmission and reception occur simultaneously and
on the same frequency. This results in self-interference (SI)
caused by leakage of transmitted signals on the co-located
receiver. Transmit beamforming has emerged as an effective
means to manage SI, either by imposing maximum SI con-
straints [7–9] while maximizing QoS, or by minimizing SI
impact [10–12] under a minimum QoS requirement.

Work funded by MICIU/AEI/10.13039/501100011033 and by ERDF/EU
under grants PID2022-136512OB-C21/C22 and fellowship PRE2020-096625
“ESF Investing in your future”, and by grant 2021 SGR 01033.

J. Borras was with the atlanTTic Research Center, Universidade de Vigo,
36310 Vigo, Spain. He is now with the Department of Signal Theory and
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In the area of integrated sensing and communication (ISAC)
[13], conventional approaches to enable both functionalities
include convex combinations of sensing- and communication-
optimal beamformers [14], which need not yield globally op-
timal solutions; or mixing radar and communication signaling
[15], which requires interference cancellation at receivers.
Multi-functional beamforming provides global solutions that
may improve the communication-sensing tradeoff [16–19], and
can also mitigate SI in monostatic ISAC systems [20–23].

Many multi-functional beamforming problems fall under
the class of nonconvex quadratically constrained quadratic
problems (QCQPs). These are typically transformed into rank-
constrained semidefinite programs (SDPs) and approached via
the semidefinite relaxation (SDR) method [24], which may not
be tight, meaning that SDR only provides an approximate so-
lution to the original nonconvex QCQP. Even in situations for
which the SDR is tight, this only guarantees that the solution to
the original QCQP is in the solution set of the relaxed problem;
the SDR solution obtained by a convex solver may not be
QCQP-feasible [25], and additional procedures may be needed
to extract a feasible (and in general suboptimal) component
from the SDR solution, making this approach computationally
onerous. In this vein, [26] shows that any QCQP with at most
three quadratic constraints admits a tight SDR. In such cases,
the optimal QCQP-feasible solution can be recovered directly
via [26, Algorithm 1]. However, this fundamental condition
can be overly restrictive for some practical problems. In this
context, we investigate a class of nonconvex, homogeneous
QCQPs with an arbitrary number of inequality constraints.
For these, we identify in Sec. II a sufficient condition on
the solution of the corresponding dual problem for strong
duality, in which case it also provides the optimal solution
to the original QCQP. Thus, checking this condition before
attempting to solve the corresponding SDR becomes appealing
for problems in which the number of variables is much larger
than the number of constraints. Examples in the context of
IBFD and ISAC beamforming design are provided in Sec. III.

II. MAIN RESULT

Let A be an n × n Hermitian (possibly non-definite)
matrix, and {Bp}Pp=1, {Cq}Qq=1 be positive semidefinite n×n
matrices. Consider the following homogeneous QCQP:

min
f∈Cn

fHAf (1a)

s. t. fHBpf ≥ τ2p , p = 1, . . . , P, (1b)

fHCqf ≤ δ2q , q = 1, . . . , Q, (1c)

Jordi Borràs
Accepted version of the article published in IEEE Wireless Communications Letters, 2025. DOI: 10.1109/LWC.2025.3611843.
Available at  http://ieeexplore.ieee.org

Jordi Borràs
©2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.



IEEE WIRELESS COMMUNICATIONS LETTERS 2

where τ2p > 0, δ2q > 0 for all p, q. Note that (1) is not
convex unless A ⪰ 0 and P = 0. Typically, f is the
beamforming vector, (1b) are related to beamforming gain in
certain directions, and (1c) include interference and/or transmit
power constraints. The following assumption will be adopted:

Assumption 1. If Cqv = 0 simultaneously holds for all q =
1, . . . , Q, then v = 0.

Assumption 1 makes sense in practice, because without it
there would exist some subspace in which the transmit power
remained unconstrained. Our main result is as follows:

Theorem 1. Assume (1) is feasible and Assumption 1 holds.
Let {µ⋆,p}, {η⋆,q} be a solution to the convex problem (SDP)

max
µ1,...,µP≥0
η1,...,ηQ≥0

P∑
p=1

µpτ
2
p −

Q∑
q=1

ηqδ
2
q (2a)

s. t. A−
P∑

p=1

µpBp +

Q∑
q=1

ηqCq ⪰ 0. (2b)

If the zero eigenvalue of the positive semidefinite matrix

H⋆ = A−
P∑

p=1

µ⋆,pBp +

Q∑
q=1

η⋆,qCq (3)

is unique, i.e., it has multiplicity one, then the solution to
(1) is given by f⋆ = αv⋆, where v⋆ is the unit-norm least
eigenvector of H⋆, and

α2 =

∑P
p=1 µ⋆,pτ

2
p −

∑Q
q=1 η⋆,qδ

2
q

vH
⋆ Av⋆

. (4)

Proof: Let µ=[µ1 · · · µP ]T , η=[ η1 · · · ηQ ]T comprise the
(nonnegative) Lagrange multipliers for problem (1), and let

H(µ,η) ≜ A−
P∑

p=1

µpBp +

Q∑
q=1

ηqCq. (5)

Then, the Lagrangian for problem (1) can be written as

L(f ,µ,η) = fHH(µ,η)f +

P∑
p=1

µpτ
2
p −

Q∑
q=1

ηqδ
2
q , (6)

and the corresponding dual function is

g(µ,η) = inf
f

L(f ,µ,η) (7)

=

{∑P
p=1 µpτ

2
p −

∑Q
q=1 ηqδ

2
q , H(µ,η) ⪰ 0,

−∞, otherwise.
(8)

For all µ ≥ 0, η ≥ 0, the dual function lower bounds the
objective of the primal problem over the feasible set [27, Ch.

5]; the largest such bound is the solution to the dual problem,
which is (2). Letting g̃(µ,η) ≜

∑P
p=1 µpτ

2
p −

∑Q
q=1 ηqδ

2
q , the

dual problem (which is convex) can be rewritten as

max
µ≥0,η≥0

g̃(µ,η) s. t. λmin (H(µ,η)) ≥ 0. (9)

Note that Assumption 1 implies that
∑Q

q=1 ηqCq is positive
definite if ηq > 0 for all q. This, in turn, implies that (9)
is strictly feasible: if we take µ = 1 (the all-ones vector)
and η = β1, then H(1, β1) will be positive definite for
β > ρ(A −

∑
p Bp)/λmin(

∑
q Cq), where ρ(·) denotes the

spectral radius. Hence, Slater’s constraint qualification holds,
and since (9) is convex, the Karush-Kuhn-Tucker (KKT)
conditions must hold at any optimal solution (µ⋆,η⋆) [27, Ch.
5]. If the smallest eigenvalue of H⋆ ≜ H(µ⋆,η⋆) is unique,
by direct application of the KKT conditions, there must exist
a scalar α2 ≥ 0 satisfying (10)-(11) at the bottom of this page.

We invoke now the following result [28]: for M Hermitian
depending on θ ∈ R, if its i-th eigenvalue λi is unique, then

∂λi

∂θ
= vH

i

(
∂M

∂θ

)
vi, (12)

where vi is the unit-norm eigenvector of M associated to λi.
Using this and the uniqueness of λmin (H⋆), (10)-(11) read as

α2vH
⋆ Bpv⋆

{
= τ2p , ∀p such that µ⋆,p > 0,
≥ τ2p , ∀p such that µ⋆,p = 0,

(13)

α2vH
⋆ Cqv⋆

{
= δ2q , ∀q such that η⋆,q > 0,
≤ δ2q , ∀q such that η⋆,q = 0,

(14)

where v⋆ denotes the unit-norm least eigenvector of H⋆. Then

α2λmin (H⋆) = α2vH
⋆ H⋆v⋆ (15)

= α2vH
⋆ Av⋆ −

P∑
p=1

µ⋆,pτ
2
p +

Q∑
q=1

η⋆,qδ
2
q , (16)

where (16) is due to (13)-(14) and the fact that µ⋆,p ≥ 0,
η⋆,q ≥ 0, ∀p, q. It follows from (16) that

g̃(µ⋆,η⋆) + α2λmin (H⋆) = α2vH
⋆ Av⋆. (17)

Now note that λmin (H⋆) must be zero; otherwise, some entry
of µ⋆ (resp. η⋆) could be slightly increased (resp. decreased)
so that the objective in (9) would increase without violating
the constraints. Together with (17), this shows that

P∑
p=1

µ⋆,pτ
2
p −

Q∑
q=1

η⋆,qδ
2
q = α2vH

⋆ Av⋆, (18)

which equals the value of primal objective when evaluated at
αv⋆. In addition, (13)-(14) show that αv⋆ is primal feasible.
Hence, the duality gap is zero, and f = αv⋆ is primal optimal.
The value of α can be determined from (18), which yields (4).

∂(g̃(µ,η) + α2λmin(H(µ,η))

∂µp

∣∣∣∣
(µ⋆,η⋆)

{
= 0, ∀p such that µ⋆,p > 0,
≤ 0, ∀p such that µ⋆,p = 0,

(10)

∂(g̃(µ,η) + α2λmin(H(µ,η))

∂ηq

∣∣∣∣
(µ⋆,η⋆)

{
= 0, ∀q such that η⋆,q > 0,
≤ 0, ∀q such that η⋆,q = 0.

(11)
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(a) Full-duplex communication architecture (Sec. III-A).
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(b) Joint communication and sensing architecture (Sec. III-B).

Fig. 1: System model for the application examples discussed in Sec. III.

Note that (13)-(14) imply

min
1≤q≤Q

{
δ2q

vH
⋆ Cqv⋆

}
≥ max

1≤p≤P

{
τ2p

vH
⋆ Bpv⋆

}
. (19)

A contradiction would arise if (19) did not hold, indicating
that the primal problem, i.e., the QCQP (1), is unfeasible. ■

Corollary 1. Under the conditions of Theorem 1, the SDR of
the QCQP (1) is tight.

Proof: By Theorem 1, problem (1) enjoys strong duality.
Now note that since Slater’s constraint qualification applies to
the (convex) dual problem (2), it also enjoys strong duality
[27]. The dual of (2), i.e., the bidual of (1), is the SDR of the
original QCQP (1) [29]; hence, the optimal value of the SDR
is equal to the optimal value of (1). ■
Computational complexity. The complexity of solving an
SDP with c constraints and v variables via an interior point
method (IPM) is roughly O((max{c, v})4) [24], [30]. Thus,
solving (2) has complexity O((P+Q)4), whereas checking the
dimension of the null space of H⋆ via Gaussian elimination
has complexity O(n3). In contrast, and assuming n ≥ P +Q
as it is typically the case, the complexity of solving the SDR of
(1) is O(n4). Thus, for settings in which n is large, checking
for strong duality via Theorem 1 may be appealing.

III. EXAMPLES

A. SI Cancellation (SIC) in Full-Duplex Communications

Fig. 1(a) shows an FD transceiver with separate, co-located
transmit (TX) and receive (RX) arrays simultaneously per-
forming uplink (TX2 → RX1) and downlink (TX1 → RX2)
communication. Let Ni (resp. Mj) be the number of antennas
at TXi (resp. RXj). TX1 employs a beamformer f ∈ CN1

to send a zero-mean, unit-variance symbol s through channel
H12 ∈ CM2×N1 . At RX2, a beamformer g ∈ CM2 is applied,
so that the received signal reads as

y = gHH12fs+ gHw, (20)

where w ∼ NC(0, σ
2IM2

) is the thermal noise. Under this
model, it is readily seen that the optimal RX beamformer is a
maximal ratio combiner (MRC), i.e., g = H12f/∥H12f∥.

Since TX1 and RX1 are co-located, the downlink transmis-
sion causes SI in the FD receive array, which may severely de-
grade uplink performance. Among the different means to deal
with SI, TX beamforming is appealing due to its capability to
avoid saturation of the RX RF front-end. The goal is to mini-
mize the SI power leaked on the RX array while guaranteeing
a minimum beamforming gain for downlink communication,
and under a total power constraint (TPC) or per-antenna power

constraints (PAPC). Letting HSI ∈ CM1×N1 be the SI channel
matrix, the problem at hand can be formulated as

min
f

fHHH
SI HSIf (21a)

s. t. fHHH
12H12f ≥ τ2 (21b){

fHf ≤ PT, (TPC), or
fHeie

H
i f ≤ pi, i = 1, . . . , N1, (PAPC)

(21c)

with ei the i-th column of IN1
, τ2 the minimum downlink

gain, PT the maximum total TX power, and pi the maximum
available power at the i-th antenna, satisfying

∑N1

i=1 pi = PT.
Note, (21) has the same structure as (1) with A = HH

SI HSI,
P = 1, B1 = HH

12H12, and (Q = 1,C1 = IN1
) for TPC or(

Q = N1,Cq = eqe
H
q

)
for PAPC.

The application of Theorem 1 to (21) is tested in this sce-
nario, assuming half-wavelength uniform linear arrays (ULAs)
with N1 = 16, M1 =M2 = 8. For the downlink channel we
adopt the narrowband clustered model [31]:

H12 =

Ncl∑
m=1

Nray∑
n=1

gmnaR (θmn)a
H
T (ϕmn) , (22)

with Ncl and Nray the number of clusters and of rays per
cluster, resp., and gmn, ϕmn, and θmn the complex gain, angle
of departure (AoD), and angle of arrival (AoA) for the n-th ray
in the m-th cluster. aT(ϕ) and aR(θ) are the steering vectors
corresponding to the TX and RX arrays. Regarding the SI
channel, HSI ∈ CM1×N1 captures two effects: the near-field
coupling and the far-field reflections due to nearby scatterers.
Following [21], [31], the near-field term is modeled as

[HNF]pq =
1

dpq
e−ȷ2πdpq/λ, (23)

with λ the wavelength and dpq the distance between the p-
th TX and q-th RX antennas. The far-field term HFF follows
(22). Both terms are normalized so that ∥HFF∥2F = ∥HNF∥2F =
N1M1. Then, for a given Rice factor κ, HSI is given by

HSI =

√
κ

κ+ 1
HNF +

√
1

κ+ 1
HFF. (24)

We consider Ncl = 4 and Nray = 8 for all links, and κ = 10
dB. AoDs/AoAs are Gaussian with standard deviation of 8◦

and mean cluster angles uniformly distributed within [0, 360◦].
Path gains are i.i.d. complex Gaussian with mean 1 dB and
standard deviation 0.5 dB. Array geometry is as in [31, Fig.
2], with α = β = π

2 and δ = 2λ. Channel matrices are
normalized so that ∥H12∥2F = N1M2 and ∥HSI∥2F = N1M1.
The minimum downlink beamforming gain is set as τ2 =
γλmax(H

H
12H12), with γ ∈ [0, 1], whereas power constraints

are set as PT = 1 (TPC) and p1 = · · · = pN1
= 1

N1
(PAPC).
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Fig. 2: Probabilistic analysis of problem (21).

In Fig. 2 we compare, in a probabilistic sense, the outcomes
of attempting to solve (21) via Theorem 1, or directly applying
SDR to (21), in which case the rank-1 candidate solution is
taken as the principal eigenvector (no improvement was ob-
served by using randomization). In all cases, we first checked
if a feasible vector in the null space of HH

SI HSI exists (termed
“unconstrained solution” in Fig. 2).

TPC case: The SDR of (21) is always tight, since the
number of constraints is no more than three [24]; however,
the adopted IPM is not guaranteed to find the rank-1 solution.
Although (21) is always feasible under TPC for PT = 1 and
γ ∈ [0, 1], the rank-1 component extracted from the SDR
solution may turn out to be unfeasible, see Fig. 2(a). It was
observed that when constraint (21b) is loose (small γ), the
IPM tends to find high-rank solutions, and the probability of
extracting a feasible rank-1 solution drops for γ ≈ 0.15. As
γ increases, the IPM is more likely to find rank-1 solutions,
which are optimal since SDR is tight. As seen in Fig. 2(a),
whenever λmin (H⋆) is unique, (19) holds, as expected since
(21) is always feasible. Note that, in this case, a rank-1 solution
can always be found via [26, Algorithm 1]. However, when
λmin (H⋆) is unique, Theorem 1 permits finding the optimal
solution with much less computational cost.

PAPC case: Under PAPC, (21) may or may not be feasible
depending on the value of γ. Now the number of constraints
is P + Q = N1 + 1, and the SDR of (21) need not be tight
if N1 > 2. As seen in Fig. 2(b), there exist cases in which
(19) is not satisfied although λmin (H⋆) is unique, pointing to
primal infeasibility, more likely as γ → 1.

Fig. 3 shows the corresponding tradeoff curves for both
approaches, together with that based on a convex combination
(CC) of SIC-only and communication-only solutions1 (which
is analogous to multibeam designs for joint communication
and sensing [32], [33]). It is seen that, whenever a feasible
rank-1 solution is found from SDR and λmin (H⋆) happens
to be unique, both approaches yield the same solution in this
setting, both under TPC and PAPC; whereas the CC approach
suffers a significant loss.

1The SIC-only solution fSIC is given by the least eigenvector of HH
SI HSI,

whereas the communication-only solution fcom is the principal eigenvector of
HH

12H12. Then, the CC solution reads as fCC = (1−ω)fSIC+ωfcom, with
ω ∈ [0, 1], which may need to be (element-wise) scaled to satisfy TPC/PAPC.

Fig. 3: Tradeoff curves for problem (21) sweeping γ from 0 to 1.

B. Integrated Sensing and Communication under PAPC

Consider now the setting from Fig. 1(b), in which an ISAC
transceiver, equipped with an array of NT antennas, simulta-
neously performs downlink single-stream communication and
radar sensing toward P targets. It transmits a zero-mean,
unit-variance symbol s to the downlink user, which has an
array of MU antennas. Letting f ∈ CNT , g ∈ CMU and
Hc ∈ CMU×NT be the TX and RX beamforming vectors and
the downlink channel matrix, resp., the received signal reads
analogously to (20). Again, MRC beamforming is optimal at
RX: g = Hcf/∥Hcf∥.

One possible design for the ISAC TX beamformer is to
maximize the downlink beamforming gain under a requirement
on the TX beampattern gain in the direction of each target.
Under PAPC, this is formulated as

min
f

− fHHH
c Hcf (25a)

s. t. |fHaT(θp)|2 ≥ τ2p , p = 1, . . . , P, (25b)

fHeqe
H
q f ≤ pq, q = 1, . . . , NT, (25c)

where τ2p is the minimum gain in the direction of the p-th
target. Note that (25) fits the general structure of (1), with A =
−HH

c Hc, Bp = aT(θp)a
H
T (θp), Cq = eqe

H
q , and Q=NT.

As in Sec. III-A, we assume a setting with λ
2 -spaced ULAs,

NT = 16, MU = 8, and P = 2 targets. The downlink
channel Hc is modeled as in (22) with the corresponding
parameters given below (24). Target directions θp, ∀p, follow
the same distribution as AoDs/AoAs. The channel matrix and
steering vector are normalized so that ∥Hc∥2F = NTMU and
∥aT(θ)∥2 = NT. TX beampattern gain constraints are set to
τ2p = γpλmax(aT(θp)a

H
T (θp)), with γp ∈ [0, 1], ∀p, and power

constraints are set to pq = 1
NT

, ∀q.
Numerical results are shown in Fig. 4. The CC solution

is omitted since P > 1. Note that, since problem (25) has
P + N1 > 3 constraints, the SDR of (25) need not be tight.
As in Sec. III-A, a rank-1 component from the SDR solution is
extracted from the principal eigenvector, as no improvements
were observed when using Gaussian randomization. As shown
in Fig. 4, this rank-1 component slightly underperforms the op-
timal solution obtained via Theorem 1, while both approaches
have the same worst-case complexity O((P +NT)

4).
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Fig. 4: Tradeoff curves between the downlink beamforming gain, i.e.,
fHHH

c Hcf , and the beampattern gain at sensing direction θ1, i.e.,
|fHaT(θ1)|2, for problem (25) (sweeping γ1 from 0 to 1) under PAPC
and fixed τ22 = γ2λmax(aT(θ2)a

H
T (θ2)), with γ2 = {0, 0.1, 0.3, 0.5}.

IV. CONCLUSIONS

Our analysis exposed a condition for strong duality of a
class of QCQPs, and from which the optimal solution emerges.
Fulfillment of this condition also implies SDR tightness. Since
a rank-constrained solution may be hard to extract from the
SDR solution, our result may be potentially useful in certain
settings, especially if the number of variables is much larger
than that of constraints.
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[31] R. López-Valcarce and M. Martı́nez-Cotelo, “Full-duplex mmWave
MIMO with finite-resolution phase shifters,” IEEE Trans. Wireless
Commun., vol. 21, no. 11, pp. 8979–8994, 2022.

[32] A. Liu, T. Riihonen, and W. Sheng, “Full-duplex analog beamforming
design for mm-Wave integrated sensing and communication,” in IEEE
Radar Conf., 2023, pp. 1–6.
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