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Abstract—The problem of measuring conditional dependence
between two random phenomena arises when a third one (a
confounder) has a potential influence on the amount of information
between them. A typical issue in this challenging problem is the
inversion of ill-conditioned autocorrelation matrices. This paper
presents a novel measure of conditional dependence based on
the use of incomplete unbiased statistics of degree two, which
allows to re-interpret independence as uncorrelatedness on a finite-
dimensional feature space. This formulation enables to prune
data according to observations of the confounder itself, thus
avoiding matrix inversions altogether. The proposed approach is
articulated as an extension of the Hilbert-Schmidt independence
criterion, which becomes expressible through kernels that operate
on 4-tuples of data.

Index Terms—Hilbert-Schmidt independence criterion (HSIC),
kernel methods, conditional dependence, U-Statistics.

I. INTRODUCTION

CONDITIONAL dependence becomes relevant when a
third phenomenon might explain, mediate, or confound

the apparent relationship exhibited by an original random pair.
Its measurement is an important task in causal discovery and
Bayesian network learning [1]–[3, Ch. 7], which emerge in
applied fields such as earth system sciences [4] or clinical
data analysis [5]. Due to its nature, empirically estimating
conditional dependence is a complex problem, given that it also
requires inferring conditional marginal distributions. A known
approach consists in measuring the Hilbert-Schmidt norm of the
normalized conditional cross-covariance operator [6], grounded
in the theory of reproducing kernel Hilbert spaces (RKHS).
This kernel-based method is capable of measuring statistical
dependence by gauging correlation of data implicitly mapped
onto an infinite-dimensional space. However, it is also known
to have numerical issues concerned with matrix inversions
and regularization due to the usually low-rank structure of the
involved correlation matrices [6]. This also leads to a fairly
complex method that scales cubically with the observed data
size, becoming prohibitive for large data sets.

These issues have lately been the subject of interest of numer-
ous lines of research. A kernel-based conditional independence
test is proposed in [1] by deriving the asymptotic distribution
of the appropriate test statistic under the null hypothesis, which
succeeds in avoiding matrix inversions, but whose complexity
still increases cubically with the sample size. Other authors
have proposed to approximate kernel functions by randomly
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selecting features [7], by providing an alternative review to
the embedding process onto the RKHS [8], or by leveraging
the interpretation that dependence produces correlation of
distances [9], i.e. close pairs in one data set coincide with close
pairs in the other [10]. Nevertheless, none of these methods
addresses the aforementioned computational issues, since they
all require matrix inversions. An extension of the Hilbert-
Schmidt independence criterion (HSIC) [11], a measure of
unconditional independence, is introduced in [12] with the
objective of inferring causality, a similar endeavor to this letter,
although focused on joint independence rather than conditional
dependence.

This letter presents a procedure for measuring conditional
dependence by statistically conditioning the observed data to a
potential confounder in a simple way, bypassing matrix inver-
sion problems. The basis for conditioning is to prune pairwise
differences of data under the control of the confounder [13],
stemming from distance-based methods [10]. Simultaneously,
the estimate is constructed as an alternative derivation of the
kernel-based HSIC. While these two approaches are known to
be equivalent [14], we propose here an estimate that combines
them, albeit for different tasks. To do so, we first provide a
novel reinterpretation of the HSIC in Sec. II by translating the
problem of statistical dependence into one of correlation after
mapping data onto finite-dimensional spaces based on steering
vectors [15]. Sec. III briefly reviews the theory of unbiased
statistics (U-Statistics) [16], which is then employed in Sec. IV
to show that conditional dependence can be obtained by pruning
U-Statistics. The obtained measure, named conditional HSIC
(C-HSIC), is based on a classical signal processing structure
but linked to kernel methods, which embraces the HSIC as a
particular case when the U-Statistic is complete.

II. MARGINAL DEPENDENCE AS CORRELATION

Let d : R → CM be a mapping based on windowed steering
vectors. The mth element of d can be expressed as

[d(·)]m ≜ 1
4√
M
G
(

m√
M

)
e
jπ m√

M
·
, (1)

where1 m ∈ {−M/2, . . . ,M/2 − 1} and G : R → R is an
even and absolutely integrable function with unit L2-norm and
maximum at G(0). Given two random variables x and y, we
define a pair of transformed random vectors2 u ≜ d(x) and
v ≜ d(y). Their cross-covariance matrix Cu,v ∈ CM×M is
defined as Cu,v ≜ E

[
uvH

]
− E[u] E[v]H, where E[·] denotes

the expectation operator. Then, the following implication
holds [11]:

lim
M→∞

∥Cu,v∥2F = 0 ⇐⇒ x, y are independent, (2)

1M is assumed even for mathematical convenience.
2Without loss of generality, and for the sake of simplicity, we let u and v

have the same dimensionality.
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where ∥·∥F denotes the Frobenius norm. Terms E[d(x)] and
E[d(y)] become dense samplings of the weighted (by G(·))
marginal characteristic function of x and y, respectively, in the
limit of M → ∞. Similarly, E[d(x)dH(y)] becomes a dense
sampling of the weighted joint characteristic function (JCF).
Therefore, (2) is effectively checking the separability of the JCF
at every sample point (i.e. the factorization of E[d(x)dH(y)]
as a product of expectations), which becomes equivalent to
an uncorrelatedness property [15], [17], akin to the distance
covariance in [10].

Consider L i.i.d. samples of x and y, {x(l), y(l)}l=1,...,L,
from which we obtain two transformed complex data matrices
U ∈ CM×L and V ∈ CM×L, defined as follows:

U ≜ [u1, . . . ,uL] = [d(x(1)), . . . ,d(x(L))] (3a)

V ≜ [v1, . . . ,vL] = [d(y(1)), . . . ,d(y(L))]. (3b)

The sample cross-covariance between the transformed vectors
is given by

Ĉu,v ≜ 1
L−1

L∑
l=1

(
ul − 1

L

L∑
i=1

ui

)(
vl − 1

L

L∑
j=1

vj

)H

= 1
L−1UPVH, (4)

where P ≜ I − 1
L11

T ∈ RL×L is the data centering matrix,
a well-known projection matrix in the signal processing and
kernel methods literature [18, Appx. B.7]. Using (2), a marginal
dependence measure is given by

∥Ĉu,v∥2F = tr(ĈH
u,vĈu,v) = tr

(
1

(L−1)2VPHUHUPVH
)

= 1
(L−1)2 tr(PUHUPVHV), (5)

where the circularity of the trace operator has been used. To
see the link of (5) with the HSIC, let us examine the limit for
M → ∞ of the kernel matrices K ≜ limM→∞ UHU ∈ RL×L

and Q ≜ limM→∞ VHV ∈ RL×L. The elements of K (and
analogously those of Q) are the following:

[K]l,l′ = lim
M→∞

dH(x(l))d(x(l′))

= lim
M→∞

M
2 −1∑

m=−M
2

1√
M
G2
(

m√
M

)
e
−j2π(x(l)−x(l′)) m√

M (6)

=

∫ ∞

−∞
G2(f)e−j2π(x(l)−x(l′))f df ≜ κ

(
x(l)− x(l′)

)
,

where κ(·) is the kernel function that results from the Fourier
transform3 of G2(f), and the integral is the limit of the Darboux
sum in the second line. As a result, the entries of K and Q
are just the evaluation of κ(·) at the difference between two
data samples. Then, given (5) and taking the limit M → ∞,
we obtain the HSIC [11, Sec. 3.1]:

HSIC(x;y) ≜ 1
(L−1)2 tr(PKPQ) = lim

M→∞
∥Ĉu,v∥2F, (7)

with x = [x(1), . . . , x(L)]T and y = [y(1), . . . , y(L)]T.

3From the properties imposed on G2(f), κ(·) becomes naturally an
autocorrelation translation-invariant kernel, such that κ(0) = 1 ≥ |κ(s)|
and κ(∞) = κ(−∞) = 0. The reader is referred to [19, Sec. 1.4] where
these ideas emerge in the light of Bochner’s theorem.

In summary, the alternative formulation exposed above shows
that the HSIC results from measuring correlation in a finite-
dimensional space based on steering vectors, where the kernel
formulation arises in a second stage once the dimensionality
grows without bound. The interplay between kernels and cross-
covariance matrices of mapped data will be used later on to
condition the kernel matrices by pruning data. Beforehand, we
will reformulate the estimation of cross-covariance matrices
leveraging incomplete U-statistics, which will serve as the basis
for data pruning.

III. SAMPLE COVARIANCE MATRIX AS AN INCOMPLETE
U-STATISTIC

Consider a list containing all the unique Kmax ≜ L(L−1)/2
pairs that can be constructed from L different samples of a
random variable. This list is ordered arbitrarily such that a
single index k identifies both elements of a pair. Let f1(k) and
f2(k) be two functions that return the corresponding indices
of each term of the kth pair. Given K ≤ Kmax indices, we
construct the pairwise differences

ůk ≜ 1√
2

(
uf1(k) − uf2(k)

)
, v̊k ≜ 1√

2

(
vf1(k) − vf2(k)

)
, (8)

for k ∈ {1, . . . ,K}, corresponding to the samples of two
virtual sources ů and v̊. It is worth noting that these are zero-
mean variables for any pair with f1(k) ̸= f2(k), since u and v
are i.i.d.. Their sample cross-covariance matrix Ĉů,̊v ∈ CM×M

is then the following:

Ĉů,̊v =
1
K ŮV̊H, (9)

where Ů ≜ [̊u1, . . . , ůK ] ∈ CM×K and V̊ ≜ [̊v1, . . . , v̊K ] ∈
CM×K . Note that, thanks to the constant factor in (8), ů
and v̊ have the same average covariance matrix as u and v,
respectively. In contrast to (4), P is missing in (9) as a result
of constructing zero-mean virtual data in (8), which will lead
to a cleaner implementation and fewer matrix operations.

Equation (9) is in fact an instance of a U-Statistic. For K =
Kmax, i.e. when all data pairs are taken, we obtain the equality
Ĉů,̊v = Ĉu,v from U-Statistics theory [16]. In contrast, for
K < Kmax, i.e. when (9) is an incomplete U-Statistic, although
Ĉů,̊v remains unbiased, its estimation variance increases due
to the pruning of data. Nevertheless, Ĉů,̊v is still a consistent
estimate of Cu,v provided that K → ∞ as L → ∞.

Remark 1 (Robustness to pruning): A notable property of
incomplete U-statistics is that their robustness against data
pruning increases the larger L is [13]. To briefly illustrate
this property, consider taking only the K = ⌊L/2⌋ data
pairs with no indices in common. The number of remaining,
unused, data pairs is equal to L(L − 1)/2 − ⌊L/2⌋, which
increases with O(L2). To only use the i.i.d., unique, terms
is effectively equivalent to computing Ĉu,v with half of the
available samples [20]. It is then safe to assume that their
contribution to the overall accuracy of the sample covariance is
higher than those with repeated indices. Therefore, the larger
L is, the higher the amount of pairs that can be pruned for
some specified degradation in the estimation accuracy of the
resulting sample covariance. The implication is that K in the
incomplete U-Statistic can be designed to grow with O(L)



instead of O(L2), which provides considerable flexibility for
pruning, eases the overall computational complexity, and will
be used for choosing the number of pairs in the next section.

Once we have determined the incomplete U-statistic formu-
lation of the cross-covariance matrix, we are now in a position
to establish the underlying rule of f1(·) and f2(·) by looking
at sample pairwise differences of the confounder. Afterwards,
we will be employing the pruned cross-covariance matrix to
return to kernel methods in the same way as portrayed in (7).

IV. CONDITIONAL DEPENDENCE VIA U-STATISTICS

The conditional cross-covariance matrix between u and v is
defined as:

Cu,v|z ≜
∫
R
Cu,v|z=z dFz(z) =

∫
R
Ců,̊v|z=z dFz(z), (10)

where Ců,̊v|z=z = Cu,v|z=z (given (8)) is the cross-covariance
matrix conditioned to a specific value z of confounder z, and
Fz(z) is its cumulative distribution. With the goal of deriving
an estimator of (10), we define the virtual random variable
z̊ ≜ z1 − z2, where z1 and z2 are mutually independent and
distributed as z. Integrating over all values of z is equivalent
to doing so over the events in which z1 and z2 take the same
value, i.e. z̊ = 0. Therefore, the expectation in (10) can be
alternatively expressed as

Cu,v|z =

∫∫
R2

Ců,̊v|̊z=0 dFz(z1) dFz(z2)

= Ců,̊v|̊z=0

∫∫
R2

dFz(z1) dFz(z2) = Ců,̊v|̊z=0, (11)

where
∫∫

R2 dFz(z1) dFz(z2) = 1, and Ců,̊v|̊z=0 does not
depend on the specific values of z1 and z2 but rather on them
being equal. In consequence, conditioning with respect to z is
equal to conditioning with respect to z̊ = 0. Therefore, (11)
suggests to let the pruning of the incomplete U-Statistics in (9)
be handled by the potential confounder. However, since z̊ = 0
is an event of zero probability for continuous random variables,
data control should be based on merely small values of |̊z| [13].

With the intention of choosing data pairs to prune according
to |̊z|, we define the samples of z̊ as follows:

z̊l,l′ ≜ z(l)− z(l′), l ̸= l′, (12)

where z(l) and z(l′) are i.i.d. samples drawn from z. Then,
we let the sorting of |̊zl,l′ | (in ascending order) be the one
that determines the ordering of the index pairs provided by
f1(·) and f2(·) in Sec. III. Moreover, in view of Remark 1, the
amount of pairs K is set to grow as O(L) with

K =
⌊
Lα
2

⌋
, (13)

being 1 ≤ α ≪ (L−1) a tuning hyper-parameter. While α = 1
ensures that only very small values of |̊zl,l′ | are considered,
the U-Statistic becomes complete and there is no conditioning
at all for α = L − 1, thus yielding the HSIC as a particular
case as in (7). Then a natural trade-off emerges: low values of
α are desirable to provide strong conditioning of data, but may
also lead to excessive pruning with low statistical accuracy
in (9). Remarkably, the selection of α becomes a minor issue
provided that L is sufficiently large, as shown in [13] under the

correlation measure framework between a pair of vectors. This
will be further discussed in Sec. V with a numerical example.

A. Conditional HSIC

Now that we have determined the sorting and pruning of data
pairs according to the confounder z, let us write a conditional
dependence measure as the Frobenius norm of (9):

tr
(
ĈH

ů,̊v|zĈů,̊v|z
)
= 1

K2 tr
(
ŮHŮV̊HV̊

)
, (14)

where the circularity of the trace has been used. To link the
previous expression with kernel-based methods, let us rewrite
the zero-mean virtual data matrix Ů as follows:

Ů = 1√
2
(U1 −U2), Ua ≜ [ufa(1), . . . ,ufa(K)], (15)

for a = {1, 2}. The same is done for V̊. Accordingly, (14) is
then rewritten as

tr
(
ĈH

ů,̊v|zĈů,̊v|z
)
= (16)

1
4K2 tr

(
(U1 −U2)

H(U1 −U2)(V1 −V2)
H(V1 −V2)

)
.

Taking the limit of M → ∞, kernel matrices are obtained
from the products among U and V in (16):

Ka,a′ ≜ lim
M→∞

UH
aUa′ , Qa,a′ ≜ lim

M→∞
VH

a Va′ , (17)

whose elements are

[Ka,a′ ]k,k′ = κ
(
x(fa(k))− x(fa′(k′))

)
, (18a)

[Qa,a′ ]k,k′ = κ
(
y(fa(k))− y(fa′(k′))

)
, (18b)

where κ(·) is the kernel function as in (6). Finally, the resulting
C-HSIC can be expressed as follows:

C-HSICα(x;y) ≜ 1
4K2 tr

(
K̆Q̆

)
(19)

with K̆ ≜ K1,1 + K2,2 − K1,2 − KH
1,2 and Q̆ ≜ Q1,1 +

Q2,2 −Q1,2 −QH
1,2. Note that, as a result of the U-Statistics

implementation, each entry of the new kernel-based matrices
involves four data samples of the same source (4-tuples), in
contrast to only the pairs typically involved in classical kernel
methods. This fact, along with the lack of P, are the main
distinctive features of the C-HSIC (19) vs. HSIC (7). In contrast
to other conditional dependence measures, (19) does not require
any matrix inversion. Since K is set to grow linearly with L
in (13), the computational complexity is O(L2).

V. NUMERICAL ILLUSTRATIONS

To test the proposed method, we aim at generating uncorre-
lated data with a controlled amount of conditional dependence.
Two scenarios are studied, M+ and M−, defined as follows:

M+ :


x =

√
γap+ v

y =
√
γaq+ w

z = a

, M− :


x =

√
γbp+ v

y =
√
γcq+ w

z = b− c

. (20)

The internal i.i.d. random variables are distributed as a, b, c ∼
U(0,

√
3) (uniform), v,w ∼ N (0, 1) (normal), and p, q ∼

Bern1/2{−1, 1} (equiprobable Bernoulli). In M+, the pair
{x, y} are dependent, i.e. their mutual information is greater
than zero, but they are conditionally independent, since knowing
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Fig. 1: Dependence measures as a function of γ (with L =
100) and L (with γ = 10dB). C-HSIC measures conditional
dependence while HSIC measures unconditional dependence.
Markers denote the empirical average and bands indicate the
standard deviation.

z implies that x and y become solely driven by independent
phenomena (v and w). By contrast, x and y are marginally
independent in M−, but become conditionally dependent, since
knowledge of z correlates the possible joint values of b and
c. Parameter γ is the signal-to-noise ratio associated with the
measurements and controls the total amount of unconditional
dependence in M+ and conditional dependence in M−. In
both models, x, y and z are mutually uncorrelated due to
the multiplicative effect of mutually independent variables
p and q, so correlation measures are unable to discover
any data association. Similar ideas on modeling conditional
dependencies can be found in [21], which are inspired by
co-information [22], [23].

The universal Gaussian kernel is used as the kernel function
of choice, which yields κ(s) = exp(−( s

σ̂L−1/5 )
2) being σ̂ the

sample standard deviation. We use this expression because of
its association with kernel density estimation, known to be
related to kernel methods when estimating certain dependence
measures [24, Ch. 2]. This connection also justifies the adoption
of the power law O(L−1/5) [25, Ch. 3], [15, Appx. D].

Fig. 1 shows measures of dependence for both models with
two α values from (13): a moderate α = 4 and a sixteenfold
increase α = 64. This yields 4% and 64.5%, respectively, of the
total data pairs for L = 100, or 0.7% and 10.7% for L = 600
(and even less for higher L). For M+ (Fig. 1-(a)), C-HSIC

correctly depicts conditional independence for an increasing
value of γ, while HSIC confirms that marginal dependence
is high as γ increases. Conversely, Fig. 1-(b) exhibits the
capability of C-HSIC to discover conditional dependence for
moderate and high γ values in M−, while marginal dependence
is confirmed to be small by HSIC at any value of γ.

To get further insights on the proposed ideas, Fig. 1-(a.1)
and Fig. 1-(b.1) also show the performance of C-HSIC when
pruning data pairs is performed randomly in the U-statistic,
i.e. the pair given by f1(·) and f2(·) is not controlled by the
confounder. As a result of not being properly conditioned, C-
HSIC produces a measure of marginal dependence similar to
HSIC, but with increased variance due to the pruning itself. It
is also worth noting that random and orderly pruning perform
similarly for low values of γ, corresponding to the regime
where the confounder has no influence on the pair {x, y}, and
start to deviate as γ increases. Additionally, it can be seen
that the expected value deteriorates for α = 64, increasing in
M+ and decreasing in M−. This is a consequence of a mild
pruning for L = 100 (where α = 64 is intentionally chosen to
illustrate this effect), worsening the conditioning process and
starting to behave as an unconditioned measure.

Finally, Fig. 1-(a.2) and Fig. 1-(b.2) illustrate the behavior
of C-HSIC for multiple values of L at γ = 10dB. Model
M+, which is conditionally independent, shows that C-HSIC
correctly approaches zero as L increases. Conversely, it tends
to some nonzero value in M−. As mentioned above, α = 64
is using too many data pairs for small L values and provides
a degraded empirical average. In both models, α = 4 shows
an increased variance with respect to α = 64 due to a more
thorough pruning. However, this is reduced for sufficiently large
data sizes due to Remark 1. Similarly, the gap between expected
values for α = 4 and α = 64 is reduced as L increases,
albeit the former has the advantage of a lower computational
complexity. These results show that α is a noncritical hyper-
parameter, provided it is reasonably small.

VI. CONCLUSIONS

This work has proposed a proof of concept for a modification
on the classical HSIC under the conditional dependence
framework, named C-HSIC. Its interpretation as a correlation
measure on a finite but high-dimensional space allows an
insightful connection with kernels by letting the dimension grow
without bound. Moreover, it opens the possibility of leveraging
U-Statistics for this task. Thanks to this formulation, we can
provide a novel approach for performing statistical conditioning
by pruning data pairs based on the pairwise differences of a
potential confounder. Furthermore, the proposed measure of
conditional dependence does not require matrix inversions,
which has the advantage of reduced computational complexity
and the avoidance of addressing ill-conditioned matrices.
Numerical illustrations have shown that C-HSIC is capable
of measuring both conditional dependence and independence
in two different scenarios. Further research should study the
potential of the proposed method with richer data sets, as
well as provide a thorough comparison with other methods for
measuring conditional dependence.
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