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What is fading?

buildings

transmitter| — — | receiver

pedestrians

vehicles

The communication suffers from:
e shadowing
e scattering
e multiple reflections

all of which vary in time!
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@ Improved Capacity Bounds for Imperfect CSI

@® Joint Pilot-Precoder Design



Improved Capacity Bounds for Imperfect CSI

MIMO system with perfect CSI

Xk >{Hk >% > Yk
nT nR

Zk/\/SW

Discrete-time system equation

At time instant k, the output yx corresponding to the input x is

Yi = Hixpe + \/%Zk (keZ)
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Improved Capacity Bounds for Imperfect CSI

MIMO system with perfect CSI

/> Hy
nTtnR
Xk >{Hk ? > Yk
nT nR

channel zk/V S

Assumptions:
e {Hi}, {x«} and {z«} are mutually independent i.i.d. sequences

e {H,} known at the receiver

Coding theorem

lim Tlﬂl(x",,,;y",,, ’ H'l,,) = I(xo0; yo|Ho) = I(x; y|H)

n— o0

is an achievable rate.
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MIMO system with imperfect CSI (1 of 2)
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Improved Capacity Bounds for Imperfect CSI Joint Pilot-Precoder Design

MIMO system with imperfect CSI (1 of 2)

p(S«|H«k) S«

Xk Yk

2. /+/5nr

|p(Sk|Hk)| |E[Hk|sk]| A,

X > YE (ALY and {Sk)
are equally informative!
zi/+/snr

Hy
Xi Vi Channel error:
Hi = He — Hy

. E[HA] =0
Hka-i-\/%Zk [Hi[F]



Improved Capacity Bounds for Imperfect CSI

MIMO system with imperfect CSI (2 of 2)

A~

Hy
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Discrete-time system equation

At time instant k € Z, the system output is

Yk = H, Xk + \/%Zk
= (Flk+ Flk) Xk + \/%Zk

Assumptions:
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Improved Capacity Bounds for Imperfect CSI

MIMO system with imperfect CSI (2 of 2)

Discrete-time system equation

At time instant k € Z, the system output is

y = H X+\/i?2
= (H + H)x + Tz

Assumptions:
o {(Hy,Hy)}, {x«} and {zx} are mutually independent i.i.d. sequences
e H known at the receiver, H unknown
e E[H|A] = 0 (for almost all H)



Improved Capacity Bounds for Imperfect CSI

MIMO system with imperfect CSI (2 of 2)

Coding theorem

lim 2= 1(x"; y'l,,||:I",,,) = I(xo;y0||:|o) = I(x;y|I:I)

n— oo 2n+1

is an achievable rate.
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Rewrite the system equation:

y (I:I—&—I:I)x(; + \/%z
= Hxe + Axs + —t=z
————

effective noise
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Improved Capacity Bounds for Imperfect CSI

The worst-case noise lower bound
Assume a Gaussian input x¢ ~ N¢(0, Q)

Rewrite the system equation:
y = (I:I—&—I:I)x(; + \/%z
= |:|XG =+ I:Ix(; + \/%z
~———

effective noise

Worst-case noise bound

[Médard '00, Hassibi & Hochwald '03, Yoo & Goldsmith '06]

I(x¢;y|H) > Eg [Iogdet(H-(E[I:lQI:IT“:I]+SﬁrE[zzT])_ll:lQI:|T>]

effective noise covariance Iy

A
= Rwen

Assume E[zz'] = I, without loss of generality
6/41
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Covariance-constrained capacity

o Perfect CSIR [Foschini & Gans '98, Telatar '99]:
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Rate splitting: How does it help? (1 of 3)

Decompose x¢ into a sum of two independent Gaussian signals:
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Improved Capacity Bounds for Imperfect CSI

Rate splitting: How does it help? (1 of 3)

Decompose x¢ into a sum of two independent Gaussian signals:

Xe = x1 + X Q=Q:+Q)
-~ <~ -~
Ne(0.Q)  Ne(0,Q1)  Ne(0,Q2)

I(xe; y[H) = I(x1, %2; y|H)
= I(x1;y|ﬁ) + I(x2; y||:|,x1)
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Rate splitting: How does it help? (2 of 3)
1) First term I(xl;y\l:l) > Rwen,i: (“decode x; knowing I:I)

y = Hxi + Fxe + H(xa +x2) + —-2

effective noise
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snr

RWCN,I = Eﬂ [Iogdet(l—l—(I:IQzI:IT + E[H(Ql =+ ()2)'"]1L | Fl] + 7') 1F|Q1Fﬂ>:|

effective noise covariance

2) Second term I(x2; y|H,x1) > Rwen 2: (“decode x» knowing H and x;")

’

y

[
T <

— |:|X1
x2 + H(x1 +x2) + =2
—_—

effective noise

snr

N ~ ~ ~ ~ 1. ~
Rwenz = Eq [Iog det<|+(HQ2HT +E[AGax] + QAT [ A x] + 21) HQ2HT>

effective noise covariance
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Rate splitting: How does it help? (3 of 3)

WCN bound: Rwen
WCN bound with RS:  Rwen,1 + Rwen,2

/(XG;Y|E|)
I(xc; y|H)

ININ

} which is best?
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Improved Capacity Bounds for Imperfect CSI

Rate splitting: How does it help? (3 of 3)

WCN bound: Rwen < I(xG;y|IE|) which is best?
WCN bound with RS:  Rwent + Rwenz < /(xe; y[H) '
Rwene = Eg, [Iog det (I + (... xix} ... )71I:|Q2I:IT)]

Jensen's
ineq.

> Ep [Iogdet (l + ( .Q:. ..)_1F|02FIT)]

= Rwen — Rweng:

Rate splitting helps!

‘ Rwen < Rwen,1t + Rwen,2 2 Rrs ‘

10 /41



Improved Capacity Bounds for Imperfect CSI

Rate splitting: numerical example

4.25
—— Rwcen,1 + Rwen,2

9 - - - Rwen

3

- 42

f =

f =

(1]

<

O

o 4.15

B

)

4.1 | | | |
0 0.2 0.4 0.6 0.8 1

Rate-splitting bound Rwcn,1 + Rwcn,2 compared to Rwcen for
(Q1,Q2) = (aQ, (1 — @)Q) and snr = 10dB, ng =6, nt =4

11/41
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Improved Capacity Bounds for Imperfect CSI

Rate splitting: general formula

Can we generalize this rate-splitting approach?

¢ (Q1,Q2) = (aQ, (1 — @)Q) is not the only possible decomposition!
For example:

Q= )\1U1U]1L
nt

Q= Z Aiujul
i—1

e How about more than 2 splits?

Q=Q:+Q+...+Q



Improved Capacity Bounds for Imperfect CSI Joint Pilot-Precoder Design

Rate splitting: general formula
Decompose xg into a sum of L signals (layers):

L L
X6 =D, X Q=>,.,Q
p Iy ¢ 21 Qe
Nc(0,Q) Nc(0,Q0)
Worst-case noise bound with L-layer rate splitting
J L chain rule
ensen A A + WCN A
Rwen < z Elog det(l + HTFe_lHQ£> < I(xc;y|H)
=1

Rrs(Q1,...,QL)

with
~ _ _ T o~ ~ - - N
I, = E[H (Zﬁ/:ll Xg/) <Zﬁ,:11 Xl’) Hf ‘ A, xi,... ,Xl—l] + E[HQ@HT ‘ H}
(NE——
residual interference C5|F;°ir"|\:;ef:€zﬁ0n

from decoded layers

+ H(Q_Eﬁ’:l QZ/)I:'T + E[Q(Q_Zﬁle QZ’)':'T ’ FI] + il

~—~

interference from layers yet to be decoded additive
noise




Improved Capacity Bounds for Imperfect CSI

Towards the best rate-splitting allocation (1 of 3)

e Riemann integration:

Z f(xi))Axi —— RimaaN - f(x)dx

X0

o Riemann-Stieltjes integration:

Z Fl)g(Ax) 72 [ F(x) dg(x)

X0

13 /41



Improved Capacity Bounds for Imperfect CSI

Towards the best rate-splitting allocation (2 of 3)

Layering functions

A layering function K: [0; 1] — CT*"T has the following properties:

e continuity
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Improved Capacity Bounds for Imperfect CSI

Towards the best rate-splitting allocation (2 of 3)

Layering functions

A layering function K: [0; 1] — CT*"T has the following properties:

e continuity
+
. 0§)\1<)\2§1:>K()\1)jK(>\2)
e K(0)=0
e K(1)=Q
Given a pair (K, L), a tuple (Qu,...,Q) is uniquely determined via
Q=K -K(F), ¢=1,...,L

such that

’ Rrs(Q1,...,Qu) £ Res(K, L)

14/41



Improved Capacity Bounds for Imperfect CSI

Towards the best rate-splitting allocation (3 of 3)
The best rate-splitting bound is
Rzs =sup sup  Rrs(Qi,...,Qr)

L Q,...,Q
Sho1Q=Q
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Towards the best rate-splitting allocation (3 of 3)
The best rate-splitting bound is
Ris =sup sup  Rrs(Qu,..., QL) = sup sup Rrs(K, L)
K L

L Q,...,Q
_ ————
Sho1Q=Q

Ris(K)
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Improved Capacity Bounds for Imperfect CSI

Towards the best rate-splitting allocation (3 of 3)
The best rate-splitting bound is

Ris =sup sup  Rrs(Qu,..., QL) = sup sup Rrs(K, L)
L Qe K L
T10-0 —
Rrs(K)
Theorem (“Infinite” layering)

Rzs(K) is achieved for L — oo and given by the Riemann-Stieltjes integral

Ris(K) = lim Res(K, L) = /01 E[tr{ﬁ*r(A)—lﬁ dK()\)H

with & ~ NC(O I) and o=

E[AK(A\)2€¢'K(\)2 AT | €] + AQ—K\)AT + E[A(Q—K\)AT] + L1,
\.\,../
residual interference interference from layers yet to be decoded additive
from decoded layers noise
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Improved Capacity Bounds for Imperfect CSI

Towards the best rate-splitting allocation (3 of 3)

The best rate-splitting bound is
Ris =sup sup  Rrs(Qu,..., QL) = sup sup Rrs(K, L)
L Que K L
261 Q=Q D —
Rgs(K)

Theorem (“Infinite” layering)

Rzs(K) is achieved for L — oo and given by the Riemann-Stieltjes integral
1 A A
Ris(K) = lim Res(K,L) = / E[tr{HTI“()\)_lH dK()\)H
L—oo 0

with & ~ NC(O I) and o=

E[AK(\)2£6TK(V) AT | ¢] +AQ—KM)AT + E[AQ—KM)AT + L1,
\.\,./
residual interference interference from layers yet to be decoded additive
from decoded layers noise
Remarks:

e Compact notation for [ tr[A(X)dB(N)] = 32, f; Aij(A) dBji())

e For continuously differentiable K, we have dK()\) = K’()\)d\ and we
obtain a Riemann integral

® Rwcn can be recovered via Jensen's inequality

15 /41



Improved Capacity Bounds for Imperfect CSI

Proof sketch of the infinite-layering formula

First step (“adding layers always helps”):

RRS(- Qe+ Qei, - - ) < RRS(- Qe Qe - - ) = RﬁS(K) = L|LIT;0 RRs(K7 L)
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Improved Capacity Bounds for Imperfect CSI

Proof sketch of the infinite-layering formula

First step (“adding layers always helps”):

RRS(- Qe+ Qei, - - ) < RRS(- Qe Qe - - ) = RQS(K) = L|LIT;0 RRs(K7 L)

Second step (“from sum to integral”):

Denote AK, = K(£) —K(2) = Q..

M-

Res(K, L) = E[Iogdet(l + I:ITI"[II:IAKZ)]

(=1

~ |

= 3 [ER{A' T RAK) + O (K]

=1

o~

-

Loroo, /E[tr{wr(x)*lﬂdx(x)}] +/1 A
0 %r
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Continuity
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Provided that E[||A||#] < oo, the function Rgs(K) is uniformly continuous in K:

Ve >0:36 > 0: [|Ky — Kalloo < 6 = |Rés(Ki) — Riis(K2)| < e

Continuous differentiable layering functions

Provided that E[||A||#] < oo, the best rate-splitting bound R¢ is the
supremum of Ris(K) over continuously differentiable layering functions, i.e.,

Rg$ =sup Ris(K) = sup  Rgs(K)
K differentiable K

Optimal layering

Provided that E[||A||#] < oo, there exists an optimal layering function

K* = argmax Ris(K)
K

such that Ri = Ris(K*).

17 /41



Improved Capacity Bounds for Imperfect CSI

Example 1: SIMO with white channel error
Assumptions:
e nr =1, (A,H) = (h,h), K\) = k()
e hand h are mutually independent

e E[hh'] = VI, (spatially white estimation error)

18 /41



Improved Capacity Bounds for Imperfect CSI

Example 1: SIMO with white channel error
Assumptions:
e nr =1, (A,H) = (h,h), K\) = k()
e hand h are mutually independent

e E[hh'] = VI, (spatially white estimation error)

After some algebra:

Ris(K) :/O E [ Ihl> dk(2)

1 — k(\) + B(k(N)[h]}3

where (k) = \7((51 — 1)k +1) +snr " with =1 ~ gamma(1, 1)

18 /41



Improved Capacity Bounds for Imperfect CSI

Example 1: SIMO with white channel error
Assumptions:
e nr =1, (A,H) = (h,h), K\) = k()
e hand h are mutually independent

e E[hh'] = VI, (spatially white estimation error)

After some algebra:
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After some algebra:
. o2
Lo |[hl2
Rrs(k) = /0 E [1 — k(\) + /B(k(A))HﬁH%] A

/1 [ B }
= E|————————| d\
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Example 1: SIMO with white channel error
Assumptions:
e nr =1, (A,H) = (h,h), K\) = k()
e hand h are mutually independent

e E[hh'] = VI, (spatially white estimation error)

After some algebra:
. o2
Lo |[hl2
Res(k) = /0 E [1 — k(\) + /B(k(A))HﬁH%] A

/1[ B }
= E|————————| d\
o [1=2+B80)[R|2

where (k) = \7((51 — 1)k +1) +snr " with =1 ~ gamma(1, 1)

hil2 \/(=. 1) _ k2
SN Y (O /R
V(E - 1) - Al IRIE + ¥+ snr—
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Improved Capacity Bounds for Imperfect CSI

Example 1: SIMO with white channel error
Assumptions:
e nr =1, (A,H) = (h,h), K\) = k()
e hand h are mutually independent

e E[hhf] = V1, spatially white estimation error
R

After some algebra:
1 h|2
N Hh||2
c | dk(
Rrs(k) = /O [1 — k() +,B(k(>\))||h||§] W

f [ B }
= E|————————| d\
o [1=2+B80)[R|2

where (k) = \7((51 — 1)k +1) +snr " with =1 ~ gamma(1, 1)

hil2 \/(=. 1) _ k2
IR (1 YE =D~ R
V(E - 1) - Al IRIE + ¥+ snr—

Layering function has disappeared!

Rrs =E
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Improved Capacity Bounds for Imperfect CSI

Example 2: MIMO with i.i.d. fading and two exemplary layerings (1 of 2)

Assumptions:
o vec(H) ~ Nc(0, Vingny ) and vec(H) ~ N¢(0, Vlygny ) are independent

1
[ ] Q:;IHT
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Improved Capacity Bounds for Imperfect CSI

Example 2: MIMO with i.i.d. fading and two exemplary layerings (1 of 2)

Assumptions:
o vec(H) ~ Nc(0, Vingny ) and vec(H) ~ N¢(0, Vlygny ) are independent

1
[ ] Q:;IHT

Levelled layering Kie,

Klev(A) = >\Q = )\ﬁlnT

Staggered layering Ks;ag

K(AnT) 0
1 H()\nT — 1)
Kstag(A) = o _
0 /'C()\n'r —nTt + 1)
1 K(x)

where X
1 19/41



Improved Capacity Bounds for Imperfect CSI Joint Pilot-Precoder Design

Example 2: MIMO with i.i.d. fading and two exemplary layerings (2 of 2)

o Levelled layering:

Ris(Kie) = i/olE [tr{ﬁfnev(/\)*lﬁ}] dA

nr

where
Le.(N) = (AV“"T + V@I -N+ Sm) lne + (1 — A)ﬁlﬁlm

and Z,; ~ gamma(n, 1)

e Staggered layering:

nTt
RRS Kstag) - Z/

. -1
AN — | dx
14 ( 1— M)hIA;(\)~1h;

where

A = (V (2042032 + 1= Xt ar = 1) o 2 ) b+ gy A

snr

and the EI-U) ~ gamma(i, 1) are independent
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Improved Capacity Bounds for Imperfect CSI

Numerical example

2.5
2 L 1
g
3 1‘5 |
7]
=
c
[}
=
O
8 1)
£
- coh
- - Iupper
0.5 —6— RRs(Kswag) ||
—— Ris (Kiev)
@ ----Rwen
0 ! ! I
—10 0 10 20 30

snr (dB)

Capacity and MI bounds for a 2 x 2 channel with A ~ N¢(O, %I,,R,,T) and
H~ NC(07 %IanT)
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Large antenna arrays (1 of 2)

Assumptions:
o vec(H) ~ Nc(0, Vlngn ) and vec(H) ~ Nc(0, Vlng,, ) independent
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1
[ ] Q:;In_r

Large transmit array (nt — o0)
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Improved Capacity Bounds for Imperfect CSI

Large antenna arrays (1 of 2)

Assumptions:
o vec(H) ~ Nc(0, Vlngn ) and vec(H) ~ Nc(0, Vlng,, ) independent
[ ] Q = %'nT

Large transmit array (nt — o0)

Consider a sequence (K, )nren of nt X nt layering functions. Then
lim {RF:S(KHT) - RWCN} =0
nt—»o00
Large receive array (ngr — 00)

\N/—l—snr’l

lim {RF:S(K) — RWCN} — nrE |log [ =230
R0 V= +sart
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Assumptions:
o vec(H) ~ Nc(0, Vlngn ) and vec(H) ~ Nc(0, Vlng,, ) independent
[ ] Q = %'nT

Large transmit array (nt — o0)

Consider a sequence (K, )nren of nt X nt layering functions. Then
lim {RF:S(KHT) - RWCN} =0
nt—»o00
Large receive array (ngr — 00)

‘7 + snr71 nt— o0 1

~ =, — 2
VTTT +snr—!

lim {RF:S(K) — RWCN} — nrE |log
nR—» 00
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Improved Capacity Bounds for Imperfect CSI

Large antenna arrays (2 of 2)

()
‘g 0.4 ]
I ’ —6— Ris(Kiey) — Rwen ‘
= 0.3 |
O
i 0.2 |- -
2 0.1 —
< 0 & & N A

5 10 15 20 25 30

nt
Bound difference Rzs(Kiey) — Rwen for a MISO channel (ng = 1)
[0}
3 5
T
c —
c
O
< —
S .
w
= > \ \ \ \ O Ris — Rwew ||
0
5 10 15 20 25 30
nrR

Bound difference Rz — Rwen for a SIMO channel (nt = 1)
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Improved Capacity Bounds for Imperfect CSI

Asymptotically perfect CSI

Assumptions:
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Improved Capacity Bounds for Imperfect CSI

Asymptotically perfect CSI

Assumptions:

. vec(ﬁ) ~ Nc(0, \A/snrl,,R,,T) and vec(I:I) ~ Nc(0, \N/S,"lanT) are mutually
independent

o We have an arbitrary family of layering functions K,

Asymptotic tightness

If lim Vi =0, then Ris(Ken) is asymptotically tight:

snr—» oo

|imoo{/(XG; y|A) — RF:S(KW)} -0

snr—
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Improved Capacity Bounds for Imperfect CSI

Asymptotically perfect CSI: numerical example

12
10
2 8
3
2
5 6|
=
O
3
2
Qo 4 [
— Lcoh
2 - - Iupper [
—6— Ris(Kstag)
----Rwen
0% ‘ ‘
—10 0 10 20 30 40

snr (dB)

Capacity and MI bounds for a 2 x 2 channel with Venr = 1+ snr)_l/2
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Joint Pilot-Precoder Design

Introduction

Pilot-aided communication achieves good performance-complexity tradeoff

Forward pilot symbols transmitted periodically

Imperfect CSIR for the decoding task

Variables to be optimized: linear precoder and training sequence

27 /41



Joint Pilot-Precoder Design

Rayleigh block fading

Block-fading with training preambles:

T o o D T D T DT D T D |
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Joint Pilot-Precoder Design

Rayleigh block fading

Block-fading with training preambles:

T D T D T D T DT D T D |

Transmit-side spatial correlation:

where
e [W];; are random i.i.d. N¢(0,1)
e R = E[HTH] is the channel correlation



Joint Pilot-Precoder Design

System model

time index k: 1 T T.+1 T
D O A ———
T, T_T,
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Joint Pilot-Precoder Design

System model

time index ki 1 . T.+1 T
<“—r >
T, T-T:
Training phase T Data transmission phase D:
Y(Tk) = Ht®W 4 z® y(k) = HEx® 4 z(®

Two matrix variables to be optimized:

(i
e pilot Gram P = [t(l) .. .t(T*)] e transmit covariance Q = FF'
(Tt
e tr(P) is training energy e tr(Q) is transmit power
e rank(P) = T is training duration e rank(Q) is number of streams

29 /41



Joint Pilot-Precoder Design

Worst-case noise lower bound

The WCN bound reads as

Q:(R—(R'+P))Q: WT)}

/(XG$Y|F|) > Ew {Iogdet(lJrW 1+tr(QR+P))
S
= Ew [Iogdet(|+WSWT)]
= Rwen(S)
= Rwen(s)

and is a function of s = X(S).
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Joint Pilot-Precoder Design

Utility functions |

f: S — f(S)
ci"m - R
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Joint Pilot-Precoder Design

Utility functions |

Definition

f: S — f(S)
ci"m - R
A utility function f

e depends only on the unordered eigenvalues s = X(S)

e is monotonic in the vector s, that is, s < s’ = f(s) < f(s')
Utility optimization comprises a multiobjective (Pareto) optimization:

2
A Pareto optimal border

feasible s
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Joint Pilot-Precoder Design

Utility functions Il

Examples of utility functions:

e f(S) = E[log, det(1 + WSW')]  £(S) = Pr{det(l + WSWT) > n}

o £(S)=—trE[(1+ WSW')']  £(S) =Pr{—tr[(1+ WSW')"'] > n}
® £(S) = Amin(S) f(S) = Amax(S)

o £(S) = det(S) f(S) = tr(S)

o f(

S) = tr(S 1)~ £(S) = det(l + vS)



Joint Pilot-Precoder Design

Joint pilot/precoder optimization

* * T - TT
(P*,Q*) = argmax { T f(S(P,Q))}
(P.Q)
rank(P)=T-

subject to:

e Positive semidefiniteness: P = 0and Q = 0
e Energy conservation: tr(P) + (T — T;)tr(Q) < Tpu
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Joint Pilot-Precoder Design

Joint pilot/precoder optimization

* * T - TT
(P*,Q*) = argmax { T f(S(P,Q))}
(P.Q)
rank(P)=T-

subject to:
e Positive semidefiniteness: P = 0and Q = 0
e Energy conservation: tr(P) + (T — T;)tr(Q) < Tpu

Reformulation:

* * T — T’r
(P*,Q") = argmax max  f(S(P,Q))
Tr=l,..n7 T (P.Q)
rank(P)< T~
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Joint Pilot-Precoder Design

Partial optimization problems

e Prescribed precoder: P*(Q) = argmax f(S(P,Q)) = argmax f(S)
P S(e,Q)

e Prescribed pilots: Q*(P) = argmax f(S(P,Q)) = argmax f(S)
Q S(P,e)

34/41



Joint Pilot-Precoder Design

Partial optimization problems

e Prescribed precoder: P*(Q) = argmax f(S(P,Q)) = argmax f(S)
P S(e,Q)

e Prescribed pilots: Q*(P) = argmax f(S(P,Q)) = argmax f(S)
Q S(P,e)

Theorem (rank inequalities)

rank(P*(Q)) < rank(Q) rank(Q*(P))

IN

rank(P)

#pilots < #streams #streams < #pilots

34/41



Joint Pilot-Precoder Design

Partial optimization problems

e Prescribed precoder: P*(Q) = argmax f(S(P,Q)) = argmax f(S)
P S(e,Q)

e Prescribed pilots: Q*(P) = argmax f(S(P,Q)) = argmax f(S)
Q S(P,e)

Theorem (rank inequalities)

rank(P*(Q)) < rank(Q) rank(Q*(P))

IN

rank(P)

#pilots < #streams #streams < #pilots

Theorem (convex reformulations)

In the S-domain, for (quasi-)concave utilities f the partial problems are
(quasi-)convex!/

34/41



Joint Pilot-Precoder Design

Joint training and transmit directions

Spectral decompositions:

R = Ug diag(r)U} P = Up diag(p)U}, Q = Uq diag(q)U}
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Joint Pilot-Precoder Design

Joint training and transmit directions
Spectral decompositions:
R = Ug diag(r)U} P = Up diag(p)U}, Q = Uq diag(q)U}

Theorem (eigenbasis alignment)

For any utility function, it is optimal to set

Up = Uq = Ug
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Joint Pilot-Precoder Design

Pareto optimization |
Iterating between partial optimizations does not guarantee optimality!

With alignment Up = Uq = Ug, we get

2 . .
si= i Piqi p-
D T
(1 + I’,p,) (1 + j=1 IJ:Q'JPJ')
Multiobjective (Pareto) optimization:
max (S1y--sSn7)

P;i»qi >0
SipiH(T=T7) 2 ai<Tu

Pareto optimal border

feasible vectors s
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Joint Pilot-Precoder Design

Pareto optimization Il

A S

S1

\J

Theorem (Pareto optimization)

The optimization along a fixed direction e

max ||s||
s/|Isll=e

is a quasi-convex problem
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Joint Pilot-Precoder Design

Joint optimization algorithm

@ Pilot optimization: s < argmax,, q) f(s)
@ Precoder optimization: s < argmax,p ) f(s)

© Pareto optimization: s < argmaxg|gelsll

A S

start value for s

S1
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Joint Pilot-Precoder Design

Simulations |

jgirjtly op_tim pilots & Tx cov.
(joint optimization)
orthon. pilots & optim. Tx cov.
(marginal optimization)
[l orthon..pi!ots_& orthon. Tx cov.
(no optimization)

(2]

(S

Mutual information lower bound [bits / channel use]

0 | | | |

0 2 4 6 8 10 12 14 16 18
SNR [dB]

2x2 MIMO system with n = 0.7, » = 0.3
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Joint Pilot-Precoder Design

Simulations Il
400 ‘ : : :
jointly optim. pilots & Tx cov.
(joint optimization)
= 3504 orthon. pilots & optim. Tx cov.
%} (marginal optimization)
5} orthon. pilots & orthon. Tx cov.
300 (no optimization) i
5
ﬁ 250
E
o
(=]
2 200r B
@
£
S 150F 1
2
©
< 100 ©

-5 0
SNR [dB]
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Conclusions

Improved Capacity Bounds for Imperfect CSI:
e novel bound on MIMO capacity with imperfect CSIR
e sharper yet a bit more complex
e asymptotically tight
e dependency of layering functions not well understood

Joint Pilot-Precoder Design
e tackling a multidimensional joint optimization
o does the alignment property hold more generally?
e joint pilot-precoder optimization with rate-splitting bounds?

Related literature:

e A. Pastore, T. Koch, J.R. Fonollosa, “A rate-splitting approach to fading channels with
imperfect channel-state information,” IEEE Trans. Inf. Theory, Vol. 60, Issue 7, p. 4266—4285
e A. Pastore, J. Hoydis, J.R. Fonollosa, “Sharpened capacity lower bounds of fading MIMO
channels with imperfect CSI,” Proc. IEEE Int. Symp. on Inf. Theory 2013, Istanbul

e A. Pastore, M. Joham, J.R. Fonollosa, “A Framework for Joint Design of Pilot Sequence and
Linear Precoder,” submitted to IEEE Trans. Inf. Theory Available: arXiv:1210.1470
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Conclusions

Improved Capacity Bounds for Imperfect CSI:
e novel bound on MIMO capacity with imperfect CSIR
e sharper yet a bit more complex
e asymptotically tight
e dependency of layering functions not well understood

Joint Pilot-Precoder Design
e tackling a multidimensional joint optimization
o does the alignment property hold more generally?
e joint pilot-precoder optimization with rate-splitting bounds?

Related literature:

e A. Pastore, T. Koch, J.R. Fonollosa, “A rate-splitting approach to fading channels with
imperfect channel-state information,” IEEE Trans. Inf. Theory, Vol. 60, Issue 7, p. 4266—4285
e A. Pastore, J. Hoydis, J.R. Fonollosa, “Sharpened capacity lower bounds of fading MIMO
channels with imperfect CSI,” Proc. IEEE Int. Symp. on Inf. Theory 2013, Istanbul

e A. Pastore, M. Joham, J.R. Fonollosa, “A Framework for Joint Design of Pilot Sequence and
Linear Precoder,” submitted to IEEE Trans. Inf. Theory Available: arXiv:1210.1470

Thank you!
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Large random-matrix approximation

Large random-matrix approximation [Hachem, Khorunzhiy, Loubaton,

Najim, Pastur '08]

As nr, nt — oo with 0 < liminf(ng/nt) < limsup(ng/nt) < o0,

| Ris(K) = Rés(K) + O(1/n7)

where

u

Ris(K) = /Ooo /:) e — nre(x, u)d(g (1)) ¢y 4 dx

with
2 _ 1 (Vv -1
o (x)_v<;x+p )

X"T*]-e*X
f(x)= 77—+
)= =
g(x,u) = % (lfﬁ) +u
R (1—%+X)2+4:—$x

d(X) = "1'2X - % + 2x 43/41



Large random-matrix approximation: numerical example

Capacity and bounds [bits/channel use]

Capacity and MI bounds and thelr asymptotic approximations vs. SNR. Parameter
values: ng =6, nT =4, V=

6

T T
I e R
_,:6‘/'
4 o Ceon
—8— Iupper
3 < Res(K)
“ RRS(K7 2)
o Rwen
2 |
T Lcoh
S Ris(K)
1 o Res(K,2) [
’_?WCN
0 L L 1 L 1 T T
—10 -5 0 5 10 15 20 25 30
snr [dB]

V =0.5.
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Asymptotically perfect CSI (SISO)

Assumptions:
e The joint law of (H, H) = (Hunr, Henr) depends on the SNR
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Corollary (asymptotic tightness)

If Hsne|Hsne is Gaussian,

lim {1(Xs; Y|H) — RS*D} —

snr— oo
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Dependency on the layering

0.964

0.962

bits/channel use

0.960

0.958

Infinite-layer bound R¢p(aKiey + (1 — @)Kstag) as a function of a for a (r,t) = (1,2)
MISO channel, snr = 13dB
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